scholarly journals Detection of Human Cholangiocarcinoma Markers in Serum Using Infrared Spectroscopy

Cancers ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 5109
Author(s):  
Patutong Chatchawal ◽  
Molin Wongwattanakul ◽  
Patcharaporn Tippayawat ◽  
Kamilla Kochan ◽  
Nichada Jearanaikoon ◽  
...  

Cholangiocarcinoma (CCA) is a malignancy of the bile duct epithelium. Opisthorchis viverrini infection is a known high-risk factor for CCA and in found, predominantly, in Northeast Thailand. The silent disease development and ineffective diagnosis have led to late-stage detection and reduction in the survival rate. Attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) is currently being explored as a diagnostic tool in medicine. In this study, we apply ATR-FTIR to discriminate CCA sera from hepatocellular carcinoma (HCC), biliary disease (BD) and healthy donors using a multivariate analysis. Spectral markers differing from healthy ones are observed in the collagen band at 1284, 1339 and 1035 cm−1, the phosphate band () at 1073 cm−1, the polysaccharides band at 1152 cm−1 and 1747 cm−1 of lipid ester carbonyl. A Principal Component Analysis (PCA) shows discrimination between CCA and healthy sera using the 1400–1000 cm−1 region and the combined 1800—1700 + 1400–1000 cm−1 region. Partial Least Square-Discriminant Analysis (PLS-DA) scores plots in four of five regions investigated, namely, the 1400–1000 cm−1, 1800–1000 cm−1, 3000–2800 + 1800–1000 cm−1 and 1800–1700 + 1400–1000 cm−1 regions, show discrimination between sera from CCA and healthy volunteers. It was not possible to separate CCA from HCC and BD by PCA and PLS-DA. CCA spectral modelling is established using the PLS-DA, Support Vector Machine (SVM), Random Forest (RF) and Neural Network (NN). The best model is the NN, which achieved a sensitivity of 80–100% and a specificity between 83 and 100% for CCA, depending on the spectral window used to model the spectra. This study demonstrates the potential of ATR-FTIR spectroscopy and spectral modelling as an additional tool to discriminate CCA from other conditions.

2020 ◽  
Vol 28 (5-6) ◽  
pp. 255-266 ◽  
Author(s):  
Elise A Kho ◽  
Jill N Fernandes ◽  
Andrew C Kotze ◽  
Glen P Fox ◽  
Maggy Lord ◽  
...  

Heavy infestations of the blood-sucking gastrointestinal nematodes, Haemonchus contortus can cause severe anaemia in sheep and leakage of blood into the faeces, leading to morbidity and mortality. Early and accurate diagnosis of infections is critical for timely treatment of sheep, minimizing production and sheep welfare impacts. In pursuit of a quick and easy measure of H. contortus infections, we investigated the use of portable visible near infrared spectrometers for detecting the presence of haemoglobin in sheep faeces as an indicator of H. contortus infection. Calibration models built within the 400–600 nm region by partial least square regression resulted in acceptable prediction accuracies (r 2 p > 0.70 and root mean squared error of prediction <2.64 µg Hb mg−1 faeces) for haemoglobin quantification using two spectrometers. The prediction results from support vector machine regression further improved the prediction of haemoglobin in moist sheep faeces (r 2 p > 0.87 and root mean squared error of prediction <2.00 µg haemoglobin mg−1 faeces). Based on a threshold for anthelmintic treatment of 3 µg Hb mg−1 faeces, both the partial least square and support vector machine models showed high sensitivity (89%) and high specificity (>77%). The specificity of the prediction model for detecting haemoglobin in sheep faeces may be improved by adding more variations in faecal composition into the calibration model. Our success in detecting haemoglobin in sheep faeces, following minimal sample preparation, suggests that with further development, vis–near infrared spectroscopy can provide a sensitive and convenient method for on-farm diagnosis of H. contortus infections.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Ling Yang ◽  
Ting Wu ◽  
Yun Liu ◽  
Juan Zou ◽  
Yunmao Huang ◽  
...  

Consumers concern about food adulteration. Pork meat is the principal adulterated species of beef and mutton. The conventional detection methods have their own limitations; therefore, we sought to develop an efficient and economical identification method using an infrared spectroscopy technique for meat. The Mahalanobis distance method was used to remove outliers in spectrum data. Interferences were eliminated using multiple scatter correction, standard normal variate, Savitzky-Golay smoothing, and normalization. The partial least square discriminant analysis (PLS-DA) and support vector machine (SVM) were used to establish identification models. In the Mahalanobis distance method, the coefficient of test sets was increased from 0.93 to 0.99; the RMSEC and RMSECV were decreased from 0.17 to 0.09 and 0.21 to 0.11 accordingly. The coefficient of determination in-between the calibration and testing sets in PLS-DA reached 0.99 and 0.99, RMSEC was 0.06, and both the RMSECV and RMSEP were 0.08. In contrast, in SVM, methods were 0.97 and 0.96. The RMSEC, RMSECV, and RMSEP were 0.15, 0.17, and 0.24, respectively. In summary, using a combination of infrared spectroscopy technology with PLS-DA was a better identification method than the SVM method that can be used as an effective method to identify pork, beef, and mutton meat samples.


Sensors ◽  
2020 ◽  
Vol 20 (18) ◽  
pp. 5322
Author(s):  
Hongyan Zhu ◽  
Aoife Gowen ◽  
Hailin Feng ◽  
Keping Yu ◽  
Jun-Li Xu

Hyperspectral imaging (HSI) emerges as a non-destructive and rapid analytical tool for assessing food quality, safety, and authenticity. This work aims to investigate the potential of combining the spectral and spatial features of HSI data with the aid of deep learning approach for the pixel-wise classification of food products. We applied two strategies for extracting spatial-spectral features: (1) directly applying three-dimensional convolution neural network (3-D CNN) model; (2) first performing principal component analysis (PCA) and then developing 2-D CNN model from the first few PCs. These two methods were compared in terms of efficiency and accuracy, exemplified through two case studies, i.e., classification of four sweet products and differentiation between white stripe (“myocommata”) and red muscle (“myotome”) pixels on salmon fillets. Results showed that combining spectral-spatial features significantly enhanced the overall accuracy for sweet dataset, compared to partial least square discriminant analysis (PLSDA) and support vector machine (SVM). Results also demonstrated that spectral pre-processing techniques prior to CNN model development can enhance the classification performance. This work will open the door for more research in the area of practical applications in food industry.


2020 ◽  
Vol 10 (4) ◽  
pp. 1319 ◽  
Author(s):  
Nataly J. Galán-Freyle ◽  
María L. Ospina-Castro ◽  
Alberto R. Medina-González ◽  
Reynaldo Villarreal-González ◽  
Samuel P. Hernández-Rivera ◽  
...  

A simple, remote-sensed method of detection of traces of petroleum in soil combining artificial intelligence (AI) with mid-infrared (MIR) laser spectroscopy is presented. A portable MIR quantum cascade laser (QCL) was used as an excitation source, making the technique amenable to field applications. The MIR spectral region is more informative and useful than the near IR region for the detection of pollutants in soil. Remote sensing, coupled with a support vector machine (SVM) algorithm, was used to accurately identify the presence/absence of traces of petroleum in soil mixtures. Chemometrics tools such as principal component analysis (PCA), partial least square-discriminant analysis (PLS-DA), and SVM demonstrated the effectiveness of rapidly differentiating between different soil types and detecting the presence of petroleum traces in different soil matrices such as sea sand, red soil, and brown soil. Comparisons between results of PLS-DA and SVM were based on sensitivity, selectivity, and areas under receiver-operator curves (ROC). An innovative statistical analysis method of calculating limits of detection (LOD) and limits of decision (LD) from fits of the probability of detection was developed. Results for QCL/PLS-DA models achieved LOD and LD of 0.2% and 0.01% for petroleum/soil, respectively. The superior performance of QCL/SVM models improved these values to 0.04% and 0.003%, respectively, providing better identification probability of soils contaminated with petroleum.


2020 ◽  
Vol 21 (7) ◽  
Author(s):  
Danang Sudarwoko Adi ◽  
SUNG-WOOK HWANG ◽  
DWI AJIAS PRAMASARI ◽  
YUSUP AMIN ◽  
BERNADETA AYU WIDYANINGRUM ◽  
...  

Abstract. Adi DS, Hwang SW, Pramasari DA, Amin Y, Widyaningrum BA, Darmawan T, Septiana E, Dwianto W, Sugiyama J. 2020. Spectral observation of agarwood by infrared spectroscopy: The differences of infected and normal Aquilaria microcarpa. Biodiversitas 21: 2893-2899. This study was conducted to evaluate and to determine the potential spectral band assignments that influenced the differentiation of normal and infected agarwood of Aquilaria microcarpa using Fourier Transform Infrared Spectroscopy (FTIR) and Fourier Transform Near-Infrared Spectroscopy (FTNIR). The results showed that the differences in band intensity on FTIR were identified as C=O stretching (lignin), COO-stretching (hemicellulose), aromatic skeletal vibration (lignin), and C-H bending vibration. The increasing absorbances of infected agarwood were supposed as the change on the wood tissues due to the releasing resinous compound. The C-O bond (aromatic alkane) and stretching (ether), C-C stretching (aromatic alkane), and C-H bond (aromatic ring) which related to the scented fragrance of agarwood have appeared on the FTIR spectra. Multivariate analysis with principal component analysis (PCA) and partial least square discriminant analysis (PLS-DA) of the second derivative NIR spectra at the wavenumber 8,000-4,000 cm-1 showed that normal and infected agarwood was successful to be separated. Discriminant model one-on-one classification exhibited good performances as the R2 performance (R2P) values was 0.99. There were eight major wood components which contributed to the separation based on NIR spectra, where lignin, hemicellulose, and xylans were the most valuable chemical compound.


2019 ◽  
Vol 8 (1) ◽  
Author(s):  
Khairunnisa Khairunnisa ◽  
Rizka Pitri ◽  
Victor P Butar-Butar ◽  
Agus M Soleh

This research used CFSRv2 data as output data general circulation model. CFSRv2 involves some variables data with high correlation, so in this research is using principal component regression (PCR) and partial least square (PLS) to solve the multicollinearity occurring in CFSRv2 data. This research aims to determine the best model between PCR and PLS to estimate rainfall at Bandung geophysical station, Bogor climatology station, Citeko meteorological station, and Jatiwangi meteorological station by comparing RMSEP value and correlation value. Size used was 3×3, 4×4, 5×5, 6×6, 7×7, 8×8, 9×9, and 11×11 that was located between (-40) N - (-90) S and 1050 E -1100 E with a grid size of 0.5×0.5 The PLS model was the best model used in stastistical downscaling in this research than PCR model because of the PLS model obtained the lower RMSEP value and the higher correlation value. The best domain and RMSEP value for Bandung geophysical station, Bogor climatology station, Citeko meteorological station, and Jatiwangi meteorological station is 9 × 9 with 100.06, 6 × 6 with 194.3, 8 × 8 with 117.6, and 6 × 6 with 108.2, respectively.


2020 ◽  
Vol 16 ◽  
Author(s):  
Linqi Liu ◽  
JInhua Luo ◽  
Chenxi Zhao ◽  
Bingxue Zhang ◽  
Wei Fan ◽  
...  

BACKGROUND: Measuring medicinal compounds to evaluate their quality and efficacy has been recognized as a useful approach in treatment. Rhubarb anthraquinones compounds (mainly including aloe-emodin, rhein, emodin, chrysophanol and physcion) are its main effective components as purgating drug. In the current Chinese Pharmacopoeia, the total anthraquinones content is designated as its quantitative quality and control index while the content of each compound has not been specified. METHODS: On the basis of forty rhubarb samples, the correlation models between the near infrared spectra and UPLC analysis data were constructed using support vector machine (SVM) and partial least square (PLS) methods according to Kennard and Stone algorithm for dividing the calibration/prediction datasets. Good models mean they have high correlation coefficients (R2) and low root mean squared error of prediction (RMSEP) values. RESULTS: The models constructed by SVM have much better performance than those by PLS methods. The SVM models have high R2 of 0.8951, 0.9738, 0.9849, 0.9779, 0.9411 and 0.9862 that correspond to aloe-emodin, rhein, emodin, chrysophanol, physcion and total anthraquinones contents, respectively. The corresponding RMSEPs are 0.3592, 0.4182, 0.4508, 0.7121, 0.8365 and 1.7910, respectively. 75% of the predicted results have relative differences being lower than 10%. As for rhein and total anthraquinones, all of the predicted results have relative differences being lower than 10%. CONCLUSION: The nonlinear models constructed by SVM showed good performances with predicted values close to the experimental values. This can perform the rapid determination of the main medicinal ingredients in rhubarb medicinal materials.


2021 ◽  
Vol 13 (4) ◽  
pp. 641
Author(s):  
Gopal Ramdas Mahajan ◽  
Bappa Das ◽  
Dayesh Murgaokar ◽  
Ittai Herrmann ◽  
Katja Berger ◽  
...  

Conventional methods of plant nutrient estimation for nutrient management need a huge number of leaf or tissue samples and extensive chemical analysis, which is time-consuming and expensive. Remote sensing is a viable tool to estimate the plant’s nutritional status to determine the appropriate amounts of fertilizer inputs. The aim of the study was to use remote sensing to characterize the foliar nutrient status of mango through the development of spectral indices, multivariate analysis, chemometrics, and machine learning modeling of the spectral data. A spectral database within the 350–1050 nm wavelength range of the leaf samples and leaf nutrients were analyzed for the development of spectral indices and multivariate model development. The normalized difference and ratio spectral indices and multivariate models–partial least square regression (PLSR), principal component regression, and support vector regression (SVR) were ineffective in predicting any of the leaf nutrients. An approach of using PLSR-combined machine learning models was found to be the best to predict most of the nutrients. Based on the independent validation performance and summed ranks, the best performing models were cubist (R2 ≥ 0.91, the ratio of performance to deviation (RPD) ≥ 3.3, and the ratio of performance to interquartile distance (RPIQ) ≥ 3.71) for nitrogen, phosphorus, potassium, and zinc, SVR (R2 ≥ 0.88, RPD ≥ 2.73, RPIQ ≥ 3.31) for calcium, iron, copper, boron, and elastic net (R2 ≥ 0.95, RPD ≥ 4.47, RPIQ ≥ 6.11) for magnesium and sulfur. The results of the study revealed the potential of using hyperspectral remote sensing data for non-destructive estimation of mango leaf macro- and micro-nutrients. The developed approach is suggested to be employed within operational retrieval workflows for precision management of mango orchard nutrients.


Sign in / Sign up

Export Citation Format

Share Document