scholarly journals Intraductal Papillary Mucinous Neoplasms of the Pancreas: A Review of Their Genetic Characteristics and Mouse Models

Cancers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 5296
Author(s):  
Jin Li ◽  
Tao Wei ◽  
Jian Zhang ◽  
Tingbo Liang

The intraductal papillary mucinous neoplasm (IPMN) is attracting research attention because of its increasing incidence and proven potential to progress into invasive pancreatic ductal adenocarcinoma (PDAC). In this review, we summarized the key signaling pathways or protein complexes (GPCR, TGF, SWI/SNF, WNT, and PI3K) that appear to be involved in IPMN pathogenesis. In addition, we collected information regarding all the genetic mouse models that mimic the human IPMN phenotype with specific immunohistochemistry techniques. The mouse models enable us to gain insight into the complex mechanism of the origin of IPMN, revealing that it can be developed from both acinar cells and duct cells according to different models. Furthermore, recent genomic studies describe the potential mechanism by which heterogeneous IPMN gives rise to malignant carcinoma through sequential, branch-off, or de novo approaches. The most intractable problem is that the risk of malignancy persists to some extent even if the primary IPMN is excised with a perfect margin, calling for the re-evaluation and improvement of diagnostic, pre-emptive, and therapeutic measures.

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Kohei Kitagawa ◽  
Kensuke Matsumura ◽  
Masayuki Baba ◽  
Momoka Kondo ◽  
Tomoya Takemoto ◽  
...  

AbstractAutism spectrum disorder (ASD) is a highly prevalent neurodevelopmental disorder characterized by core symptoms of impaired social behavior and communication. Recent studies have suggested that the oxytocin system, which regulates social behavior in mammals, is potentially involved in ASD. Mouse models of ASD provide a useful system for understanding the associations between an impaired oxytocin system and social behavior deficits. However, limited studies have shown the involvement of the oxytocin system in the behavioral phenotypes in mouse models of ASD. We have previously demonstrated that a mouse model that carries the ASD patient-derived de novo mutation in the pogo transposable element derived with zinc finger domain (POGZWT/Q1038R mice), showed ASD-like social behavioral deficits. Here, we have explored whether oxytocin (OXT) administration improves impaired social behavior in POGZWT/Q1038R mice and found that intranasal oxytocin administration effectively restored the impaired social behavior in POGZWT/Q1038R mice. We also found that the expression level of the oxytocin receptor gene (OXTR) was low in POGZWT/Q1038R mice. However, we did not detect significant changes in the number of OXT-expressing neurons between the paraventricular nucleus of POGZWT/Q1038R mice and that of WT mice. A chromatin immunoprecipitation assay revealed that POGZ binds to the promoter region of OXTR and is involved in the transcriptional regulation of OXTR. In summary, our study demonstrate that the pathogenic mutation in the POGZ, a high-confidence ASD gene, impairs the oxytocin system and social behavior in mice, providing insights into the development of oxytocin-based therapeutics for ASD.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shin Irumagawa ◽  
Kaito Kobayashi ◽  
Yutaka Saito ◽  
Takeshi Miyata ◽  
Mitsuo Umetsu ◽  
...  

AbstractThe stability of proteins is an important factor for industrial and medical applications. Improving protein stability is one of the main subjects in protein engineering. In a previous study, we improved the stability of a four-helix bundle dimeric de novo protein (WA20) by five mutations. The stabilised mutant (H26L/G28S/N34L/V71L/E78L, SUWA) showed an extremely high denaturation midpoint temperature (Tm). Although SUWA is a remarkably hyperstable protein, in protein design and engineering, it is an attractive challenge to rationally explore more stable mutants. In this study, we predicted stabilising mutations of WA20 by in silico saturation mutagenesis and molecular dynamics simulation, and experimentally confirmed three stabilising mutations of WA20 (N22A, N22E, and H86K). The stability of a double mutant (N22A/H86K, rationally optimised WA20, ROWA) was greatly improved compared with WA20 (ΔTm = 10.6 °C). The model structures suggested that N22A enhances the stability of the α-helices and N22E and H86K contribute to salt-bridge formation for protein stabilisation. These mutations were also added to SUWA and improved its Tm. Remarkably, the most stable mutant of SUWA (N22E/H86K, rationally optimised SUWA, ROSA) showed the highest Tm (129.0 °C). These new thermostable mutants will be useful as a component of protein nanobuilding blocks to construct supramolecular protein complexes.


2021 ◽  
Vol 14 (3) ◽  
pp. 280
Author(s):  
Rita Rebelo ◽  
Bárbara Polónia ◽  
Lúcio Lara Santos ◽  
M. Helena Vasconcelos ◽  
Cristina P. R. Xavier

Pancreatic ductal adenocarcinoma (PDAC) is considered one of the deadliest tumors worldwide. The diagnosis is often possible only in the latter stages of the disease, with patients already presenting an advanced or metastatic tumor. It is also one of the cancers with poorest prognosis, presenting a five-year survival rate of around 5%. Treatment of PDAC is still a major challenge, with cytotoxic chemotherapy remaining the basis of systemic therapy. However, no major advances have been made recently, and therapeutic options are limited and highly toxic. Thus, novel therapeutic options are urgently needed. Drug repurposing is a strategy for the development of novel treatments using approved or investigational drugs outside the scope of the original clinical indication. Since repurposed drugs have already completed several stages of the drug development process, a broad range of data is already available. Thus, when compared with de novo drug development, drug repurposing is time-efficient, inexpensive and has less risk of failure in future clinical trials. Several repurposing candidates have been investigated in the past years for the treatment of PDAC, as single agents or in combination with conventional chemotherapy. This review gives an overview of the main drugs that have been investigated as repurposing candidates, for the potential treatment of PDAC, in preclinical studies and clinical trials.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Daniel Stribling ◽  
Peter L. Chang ◽  
Justin E. Dalton ◽  
Christopher A. Conow ◽  
Malcolm Rosenthal ◽  
...  

Abstract Objectives Arachnids have fascinating and unique biology, particularly for questions on sex differences and behavior, creating the potential for development of powerful emerging models in this group. Recent advances in genomic techniques have paved the way for a significant increase in the breadth of genomic studies in non-model organisms. One growing area of research is comparative transcriptomics. When phylogenetic relationships to model organisms are known, comparative genomic studies provide context for analysis of homologous genes and pathways. The goal of this study was to lay the groundwork for comparative transcriptomics of sex differences in the brain of wolf spiders, a non-model organism of the pyhlum Euarthropoda, by generating transcriptomes and analyzing gene expression. Data description To examine sex-differential gene expression, short read transcript sequencing and de novo transcriptome assembly were performed. Messenger RNA was isolated from brain tissue of male and female subadult and mature wolf spiders (Schizocosa ocreata). The raw data consist of sequences for the two different life stages in each sex. Computational analyses on these data include de novo transcriptome assembly and differential expression analyses. Sample-specific and combined transcriptomes, gene annotations, and differential expression results are described in this data note and are available from publicly-available databases.


2021 ◽  
Vol 193 (3) ◽  
pp. 613-618
Author(s):  
Stephanie Sembill ◽  
Gudrun Göhring ◽  
Elke Schirmer ◽  
Friederike Lutterloh ◽  
Meinolf Suttorp ◽  
...  

Viruses ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 674 ◽  
Author(s):  
Chiaho Shih ◽  
Chun-Che Liao ◽  
Ya-Shu Chang ◽  
Szu-Yao Wu ◽  
Chih-Shin Chang ◽  
...  

Enterovirus 71 (EV71) is a global health threat. Children infected with EV71 could develop hand-foot-and-mouth disease (HFMD), encephalitis, paralysis, pulmonary edema, and death. At present, no effective treatment for EV71 is available. We reviewed here various mouse models for EV71 pathogenesis and therapy. Earlier studies relied on the use of mouse-adapted EV71 strains. To avoid artificial mutations arising de novo during the serial passages, recent studies used EV71 clinical isolates without adaptation. Several human receptors for EV71 were shown to facilitate viral entry in cell culture. However, in vivo infection with human SCARB2 receptor transgenic mice appeared to be more limited to certain strains and genotypes of EV71. Efficacy of oral infection in these transgenic models is extremely low. Intriguingly, despite the lack of human receptors, immunodeficient neonatal mouse models can still be infected with EV71 clinical isolates via oral or intraperitoneal routes. Crossbreeding between SCARB2 transgenic and stat1 knockout mice generated a more sensitive and user-friendly hybrid mouse model. Infected hybrid mice developed a higher incidence and earlier onset of CNS disease and death. Different pathogenesis profiles were observed in models deficient in various arms of innate or humoral immunity. These models are being actively used for antiviral research.


2021 ◽  
Vol 39 (15_suppl) ◽  
pp. e20588-e20588
Author(s):  
Linping Gu ◽  
Bei Zhang ◽  
Ding Zhang ◽  
Hong Jian

e20588 Background: Transformation from non-small cell lung cancer (NSCLC) to small cell lung cancer (SCLC) is one of the resistance mechanism of EGFR tyrosine kinase inhibitors. However, the clinical course of transformed SCLC and the difference of genomic profiling between de novo SCLC patients and transformed SCLC patients are still poorly characterized. Methods: Patients from our hospital diagnosed with SCLC were enrolled retrospectively in this study, including de novo SCLC patients and SCLC patients transformed from EGFR-mutant lung adenocarcinomas. Genomic profiling was performed on formalin-fixed paraffin-embedded tumor samples by next generation sequencing (NGS). In statistical analysis, fisher ‘exact test was used. All tests were bilateral, with P<0.05 indicating significant statistical difference. Results: In total, 16 patients with SCLC transformed from EGFR-mutant lung adenocarcinomas and 230 de novo SCLC patients were included in our study. Transformed SCLC patients were more in younger (p=0.007), female (p<0.001) and non-smokers (p<0.001) than de novo SCLC patients. In transformed SCLC patients, 12 patients (75%) occurred SCLC transformation within 2 years after the lung adenocarcinomas diagnosis. Median transformation time was 20 months. During the treatment of adenocarcinomas, the overall response rate (ORR) was 75% and the median progression-free survival was 12 months. After the initiation of SCLC therapy, the ORR of 1st line chemotherapy was 40%. For the genomic profiling, EGFR mutations, including exon 19 deletion (56%), L858R (38%), and others (6%), were detected. 11 patients with acquired resistance were received EGFR T790M test, 82% of patients had acquired EGFR T790M mutation. 11 patients after transformation to SCLC had NGS test, 100% maintained their founder EGFR mutation, and other recurrent mutations included TP53, RB1 and EGFR amplification. Compared with the genetic alterations in de novo SCLC patients, TP53 mutations were significantly decreased (p=0.006) while EGFR mutations were significantly elevated (p<0.001) in transformed SCLC patients. However, no significant difference on RB1, ALK and ROS1 mutations were observed. Interestingly, a 60-year-old woman in our transformed SCLC cohort harbored EGFR 19 del mutant at allele frequency of 50.39%,she received osimertinib plus epirubicin/cyclophosphamide as 1st line treatment and reached partial response, with survival of 4 years to date. Conclusions: We demonstrated the clinical and genetic characteristics of EGFR-mutant lung adenocarcinoma transformed SCLC and found one patient still benefited from EGFR-TKI. Our study suggested that SCLC patients with EGFR mutation who transformed from lung adenocarcinoma may be potential benefit population using EGFR inhibitors.


2011 ◽  
Vol 1 (1) ◽  
pp. 11 ◽  
Author(s):  
Da Yong Lu ◽  
Ting-Ren Lu

Undesired side-effects and toxicities of drugs, especially in the area of new-drug development, are negligibleless, unpredicable and often disastrous once being encountered. The suicidal behavior caused by antidepressant treatment is a typical of clinical evidence recently being discovered. We previously hypothesized that patients’ genetic status would decide the suicidal incident rate of antidepressants - it is pharmacogenetics of antidepressants may contribute of this toxicity in patients. In this review, we discuss this problem by comparing many strings of pharmacogenomics evidence of antidepressants recently being published with many other strings of evidence such as drug withdrawal with hepatotoxicity. We argue herein that pharmacogenetics may be very useful in drug withdrawal for mental toxicity. Because this is low-incidence toxicities, which are more reliable on human’s genetic characteristics. We stress the importance of genomics studies for drug withdrawal in future.


Sign in / Sign up

Export Citation Format

Share Document