scholarly journals Clinical Value of NGS Genomic Studies for Clinical Management of Pediatric and Young Adult Bone Sarcomas

Cancers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 5436
Author(s):  
Miriam Gutiérrez-Jimeno ◽  
Piedad Alba-Pavón ◽  
Itziar Astigarraga ◽  
Teresa Imízcoz ◽  
Elena Panizo-Morgado ◽  
...  

Genomic techniques enable diagnosis and management of children and young adults with sarcomas by identifying high-risk patients and those who may benefit from targeted therapy or participation in clinical trials. Objective: to analyze the performance of an NGS gene panel for the clinical management of pediatric sarcoma patients. We studied 53 pediatric and young adult patients diagnosed with sarcoma, from two Spanish centers. Genomic data were obtained using the Oncomine Childhood Cancer Research Assay, and categorized according to their diagnostic, predictive, or prognostic value. In 44 (83%) of the 53 patients, at least one genetic alteration was identified. In 80% of these patients, the diagnosis was obtained (n = 11) or changed (n = 9), and thus genomic data affected therapy. The most frequent initial misdiagnosis was Ewing’s sarcoma, instead of myxoid liposarcoma (FUS-DDDIT3), rhabdoid soft tissue tumor (SMARCB1), or angiomatoid fibrous histiocytoma (EWSR1-CREB1). In our series, two patients had a genetic alteration with an FDA-approved targeted therapy, and 30% had at least one potentially actionable alteration. NGS-based genomic studies are useful and feasible in diagnosis and clinical management of pediatric sarcomas. Genomic characterization of these rare and heterogeneous tumors also helps in the search for prognostic biomarkers and therapeutic opportunities.

2017 ◽  
Vol 55 (06) ◽  
pp. 575-581 ◽  
Author(s):  
Dirk Walter ◽  
Sylvia Hartmann ◽  
Oliver Waidmann

AbstractThe term cholangiocarcinoma (CCA) comprises neoplasms of the intrahepatic, perihilar, and distal bile duct. Five-year survival rates of patients with CCA are below 20 %, and no targeted therapy could prove a benefit in comparison to the standard treatment of cisplatinum and gemcitabine. In recent years, next generation sequencing studies revealed a profound genomic heterogeneity of CCA subtypes potentially affecting the design of future therapy trials. This review provides a concise update on current clinical management of CCA including data of recent genomic studies and differences between CCA subtypes.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii74-ii74
Author(s):  
Kelsey Hundley ◽  
Olena Vaske ◽  
Geoff Lyle ◽  
Katrina Learned ◽  
Holly Beale ◽  
...  

Abstract Genomic characterization is often used for the identification of therapeutic targets in tumors. Recently, comparative transcriptomics has begun to be utilized for this purpose. In this pilot, we compare the transcriptome of a patient with recurrent high grade glioma (HGG) to our cohort to identify potential therapies. We reviewed transcriptomic profiles from patients who had resection of HGG at our institution over the past year as well as the UCSC cancer compendium. Briefly, tumor RNA was extracted from embedded tumor tissue sections with tumor cellularity higher than 20%. RNA libraries were sequenced to obtain approximately 65 million reads on an Illumina HiSeq 4000 System utilizing patterned flow cell technology. The RNA profile of a 24 male with Li-Fraumeni syndrome and recurrent HGG with leptomeningeal spread underwent comparative transcriptomics to identify targets. A Bayesian statistical framework for gene expression outlier detection was used. These comparisons allowed for the identification of genes and pathways that are significantly overexpressed. Our internal HGG cohort consisted of 44 adult patients and was evenly distributed among the 4 HGG Verhaak subtypes. Our patient of interest had druggable outlier expression in HDAC1, STAT1 and STAT2 in comparison to our internal cohort indicating vorinostat and ruxolitinib as potential therapies, respectively. We then compared our patient of interest to 12,747 patients in the cancer compendium and STAT2 expression was high but not an outlier. In comparison to 738 glioma samples, STAT1 and STAT2 were outliers but not HDAC1 again indicating ruxolitinib as a potential targeted therapy. The patient did not have outlier expression in notch transcriptional targets or immune checkpoint biomarkers when compared to all cohorts. In conclusion, comparative Transcriptomics can identify therapeutic targets in a patient with recurrent HGG even in small cohorts. In our pilot, we identified ruxolitinib as a potential candidate to treat leptomeningeal recurrence.


2020 ◽  
Vol 14 (3) ◽  
pp. 658-667
Author(s):  
Sven H. Loosen ◽  
Nadine T. Gaisa ◽  
Maximilian Schmeding ◽  
Christoph Heining ◽  
Sebastian Uhrig ◽  
...  

Combined hepatocellular-cholangiocarcinoma (cHCC/CCA) represents a rare type of primary liver cancer with a very limited prognosis. Although just recently genomic studies have contributed to a better understanding of the disease’s genetic landscape, therapeutic options, especially for advanced-stage patients, are limited and often experimental, as no standardized treatment protocols have been established to date. Here, we report the case of a 38-year-old male patient who was diagnosed with extensive intrahepatic cHCC/CCA in an otherwise healthy liver without signs of chronic liver disease. An interdisciplinary stepwise therapeutic approach including locoregional liver-targeted therapy, systemic chemotherapy, liver transplantation, surgical pulmonary metastasis resection, and next-generation sequencing-based targeted therapy led to a prolonged overall survival beyond 5 years with an excellent quality of life. This case report comprises several provocative treatment decisions that are extensively discussed in light of the existing literature on this rare but highly aggressive malignancy.


2020 ◽  
Vol 23 (4) ◽  
pp. 627-638
Author(s):  
Daniel A. Hescheler ◽  
Patrick S. Plum ◽  
Thomas Zander ◽  
Alexander Quaas ◽  
Michael Korenkov ◽  
...  

2019 ◽  
Vol 28 (4) ◽  
pp. 424-434 ◽  
Author(s):  
Anna Middleton ◽  
◽  
Richard Milne ◽  
Heidi Howard ◽  
Emilia Niemiec ◽  
...  

AbstractPublic acceptance is critical for sharing of genomic data at scale. This paper examines how acceptance of data sharing pertains to the perceived similarities and differences between DNA and other forms of personal data. It explores the perceptions of representative publics from the USA, Canada, the UK and Australia (n = 8967) towards the donation of DNA and health data. Fifty-two percent of this public held ‘exceptionalist’ views about genetics (i.e., believed DNA is different or ‘special’ compared to other types of medical information). This group was more likely to be familiar with or have had personal experience with genomics and to perceive DNA information as having personal as well as clinical and scientific value. Those with personal experience with genetics and genetic exceptionalist views were nearly six times more likely to be willing to donate their anonymous DNA and medical information for research than other respondents. Perceived harms from re-identification did not appear to dissuade publics from being willing to participate in research. The interplay between exceptionalist views about genetics and the personal, scientific and clinical value attributed to data would be a valuable focus for future research.


2019 ◽  
Vol 234 (12) ◽  
pp. 22493-22504 ◽  
Author(s):  
Farzaneh Sharifzad ◽  
Hamed Yasavoli‐Sharahi ◽  
Saeid Mardpour ◽  
Esmaeil Fakharian ◽  
Hassan Nikuinejad ◽  
...  

mBio ◽  
2017 ◽  
Vol 8 (6) ◽  
Author(s):  
Jake V. Bailey ◽  
Beverly E. Flood ◽  
Elizabeth Ricci ◽  
Nathalie Delherbe

ABSTRACT The largest known bacteria, Thiomargarita spp., have yet to be isolated in pure culture, but their large size allows for individual cells to be monitored in time course experiments or to be individually sorted for omics-based investigations. Here we investigated the metabolism of individual cells of Thiomargarita spp. by using a novel application of a tetrazolium-based dye that measures oxidoreductase activity. When coupled with microscopy, staining of the cells with a tetrazolium-formazan dye allows metabolic responses in Thiomargarita spp. to be to be tracked in the absence of observable cell division. Additionally, the metabolic activity of Thiomargarita sp. cells can be differentiated from the metabolism of other microbes in specimens that contain adherent bacteria. The results of our redox dye-based assay suggest that Thiomargarita is the most metabolically versatile under anoxic conditions, where it appears to express cellular oxidoreductase activity in response to the electron donors succinate, acetate, citrate, formate, thiosulfate, H2, and H2S. Under hypoxic conditions, formazan staining results suggest the metabolism of succinate and likely acetate, citrate, and H2S. Cells incubated under oxic conditions showed the weakest formazan staining response, and then only to H2S, citrate, and perhaps succinate. These results provide experimental validation of recent genomic studies of Candidatus Thiomargarita nelsonii that suggest metabolic plasticity and mixotrophic metabolism. The cellular oxidoreductase response of bacteria attached to the exterior of Thiomargarita also supports the possibility of trophic interactions between these largest of known bacteria and attached epibionts. IMPORTANCE The metabolic potential of many microorganisms that cannot be grown in the laboratory is known only from genomic data. Genomes of Thiomargarita spp. suggest that these largest of known bacteria are mixotrophs, combining lithotrophic metabolism with organic carbon degradation. Our use of a redox-sensitive tetrazolium dye to query the metabolism of these bacteria provides an independent line of evidence that corroborates the apparent metabolic plasticity of Thiomargarita observed in recently produced genomes. Finding new cultivation-independent means of testing genomic results is critical to testing genome-derived hypotheses on the metabolic potentials of uncultivated microorganisms. IMPORTANCE The metabolic potential of many microorganisms that cannot be grown in the laboratory is known only from genomic data. Genomes of Thiomargarita spp. suggest that these largest of known bacteria are mixotrophs, combining lithotrophic metabolism with organic carbon degradation. Our use of a redox-sensitive tetrazolium dye to query the metabolism of these bacteria provides an independent line of evidence that corroborates the apparent metabolic plasticity of Thiomargarita observed in recently produced genomes. Finding new cultivation-independent means of testing genomic results is critical to testing genome-derived hypotheses on the metabolic potentials of uncultivated microorganisms.


Sign in / Sign up

Export Citation Format

Share Document