scholarly journals A Novel Route for Agarooligosaccharide Production with the Neoagarooligosaccharide-Producing β-Agarase as Catalyst

Catalysts ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 214 ◽  
Author(s):  
Chengcheng Jiang ◽  
Zhen Liu ◽  
Jianan Sun ◽  
Changhu Xue ◽  
Xiangzhao Mao

Enzymes are catalysts with high specificity. Different compounds could be produced by different enzymes. In case of agaro-oligosaccharides, agarooligosaccharide (AOS) can be produced by α-agarase through cleaving the α-1,3-glycosidic linkages of agarose, while neoagarooligosaccharide (NAOS) can be produced by β-agarase through cleaving the β-1,4-glycosidic linkages of agarose. However, in this study, we showed that β-agarase could also be used to produce AOSs with high purity and yield. The feasibility of our route was confirmed by agarotriose (A3) and agaropentaose (A5) formation from agaroheptaose (A7) and agarononoses (A9) catalyzed by β-agarase. Agarose was firstly liquesced by citric acid into a mixture of AOSs. The AOSs mixture was further catalyzed by β-agarase. When using the neoagarotetraose-forming β-agarase AgWH50B, agarotriose could be produced with the yield of 48%. When using neoagarotetraose, neoagarohexaose-forming β-agarase DagA, both agarotriose and agaropentaose could be produced with the yield of 14% and 13%, respectively. Our method can be used to produce other value-added agaro-oligosaccharides from agarose by different agarolytic enzymes.

Food Research ◽  
2020 ◽  
Vol 4 (6) ◽  
pp. 1995-2002
Author(s):  
W.Y.C. Lim ◽  
N.L. Yusof ◽  
Ismail-Fitry M.R. ◽  
N. Suleiman

The aim of this study was to develop an efficient, reliable, and sustainable technology for the recovery of value-added compounds from by-product, in this case, is watermelon rinds. The properties of the watermelon rinds obtained from innovative ultrasoundassisted extraction (UAE) were evaluated. In regard to this, the pectin content, degree of esterification, and galacturonic acid content of the watermelon rind extracts were determined in order to verify the efficiency of the UAE. Initially, the UAE were conducted using two types of acid: citric and hydrochloric. The highest pectin content was obtained using citric acid. Additional UAE was then performed with citric acid at 50, 60, or 70°C for 10, 20, or 30 mins. Both UAE temperature and time significantly influenced the pectin extracts and galacturonic acid. The best findings for a high galacturonic acid content (47.41%) when the watermelon rinds were extracts at 70°C for 20 mins. According to the findings, the extraction process lasted 10 or 20 mins at all temperatures was mainly high-methoxyl pectin, which can form gels under acidic conditions. This suggests that pectins derived from watermelon rinds using UAE may be especially useful as an additive in some confectionery products.


2019 ◽  
Vol 9 (6) ◽  
pp. 668-674 ◽  
Author(s):  
Qili Wang ◽  
Mingquan Yu ◽  
Jiannan Gong ◽  
Fengtao Zhang

As one of the major value-added products of coal processing and utilization, coal pitch coke and coal tar pitch are used as raw materials to prepare high-purity graphite. The structure characteristics and properties were measured by experiments. The results show that the high-purity graphite has excellent physical properties: the skeletal density of 1.81–1.91 g/cm3, the Shore hardness of 45.5–66.6 Hs, the flexural strength of 33.0–46.1 MPa, the compressive strength of 65.6–75.8 MPa, the ash content of 67–181 ppm, the thermal expansion coefficient of 3.71–4.11 × 10–6/°C, and the electrical resistivity of 8.72–12.13 μΩ · m. Consequently, coal-based graphite materials have excellent properties and good application prospects in solar energy industry, which is an effective exploration for the transformation and upgrading of Chinese coal industry.


2018 ◽  
Vol 7 (1) ◽  
pp. 13-18
Author(s):  
Kajal Kumari ◽  
◽  
Somesh Sharma ◽  
V.K. Joshi ◽  
Surabhi Sharma ◽  
...  

Wild Himalayan fig is an underutilized wild fruit with various nutritional components. The fruit was evaluated for different parameters like crude fibre value (18.90 - 16.38 %), total phenols (72.6 – 65.4 mg/100g) and the energy value (99.84 Kcal). The shelf life of this fruit was enhanced by converting it into value added product like jam. To standardize the technology for jam preparation, different treatments were designed by varying the concentration of pectin and citric acid. Among these treatments, T3C1 containing 0.7 percent pectin and 0.3 percent citric acid was found best with higher titratable acidity (12.02%) as citric acid, ascorbic acid content (1.24mg/100g), total sugar (66.42 %) and reducing sugar (58.85%), total phenol (39.8 mg/100g), anthocyanin 17.05 mg/100 g). Further, on the basis of sensory evaluation, the standardized product had high overall acceptability along with higher score for colour, flavor etc. The FTIR analysis of prepared jam and fig pulp clearly revealed that there was no alteration in physicochemical properties of fig pulp after its processing. Hence, the results from the present investigation clearly revealed that development of jam from wild fig can also be one of the alternative for the utilization of this nutritional rich underutilized crop for commercial purposes


2021 ◽  
Vol 609 ◽  
pp. 117912
Author(s):  
Raquel A. Fernandes ◽  
Maria J. Sampaio ◽  
Eliana S. Da Silva ◽  
Hanane Boumeriame ◽  
Tânia Lopes ◽  
...  

2020 ◽  
Vol 1010 ◽  
pp. 532-537
Author(s):  
Nur Haslinda Mohamed Muzni ◽  
Noorina Hidayu Jamil ◽  
Faizul Che Pa ◽  
Wan Mohd Arif

Rice husks (RH) are agricultural wastes available abundantly in rice producing country. A by-product obtained from combustion of rice husk is rice husk ash (RHA) which is rich in silica (SiO2) contents. This paper focused on the effect of acid leaching treatment on rice husk to produce high-purity silica. There are 4 different states of conditions involved; raw rice husk (RRH), treated rice husk (TRH), rice husk ash (RHA), and treated rice husk ash (TRHA). Citric acid; C6H8O7 was used as a leaching agent. TRH and TRHA was leached to see whether treated rice husk before combustion (TRH) or treated rice husk after combustion (TRHA) will produce more high-purity silica. Chemical composition analysis shows high amorphous silica content which is 98.47% with low metallic impurities at 1.0M C6H8O7, 70 oC for treated rice husk (TRH). X-ray diffraction (XRD) pattern shows the presence of amorphous silica in treated rice husk (TRH) and crystalline silica in treated rice husk ash (TRHA). Fragmentation of TRH into small pieces after acid leaching is seen where there is significant increase in the exposed surface areas. High-purity amorphous silica with more than 98% was prepared via citric acid leaching treatment and combustion process.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Nongnuch Laohavisuti ◽  
Banjong Boonchom ◽  
Wimonmat Boonmee ◽  
Kittichai Chaiseeda ◽  
Somkiat Seesanong

AbstractEgg consumption is very high throughout the world and with it comes enormous amount of waste eggshells. To reduce and utilize these wastes, eggshell wastes were simply transformed to low- or high-purity calcium carbonate grades by washing, crushing, and drying to use as raw materials for producing highly valuable calcium phosphate products. Low-purity calcium carbonate grade was used to prepare triple superphosphate for using in fertilizer industry, whereas high-purity calcium carbonate grade was used to produce dicalcium phosphate dihydrate, monocalcium phosphate monohydrate, and tricalcium phosphate for using in mineral feed and food additive industries. All calcium phosphate samples obtained by simple, rapid, cheap, and environmentally safe method using eggshells and phosphoric acid were identified and their structural phases and impurities were determined by XRF, XRD and FTIR techniques. Thermal behaviors of raw materials and the prepared calcium phosphates excepted tricalcium phosphate were investigated by TG/DTG techniques. The methodologies described here will be useful to manage eggshells by converting them to highly valuable products, which can solve eggshell wastes problem from industries and communities. This finding supports the viewpoint of zero waste operation to produce value-added products for obtaining sustainable development, which may be selected as an alternative way for material recycling and waste management in the future.


Recycling ◽  
2021 ◽  
Vol 6 (3) ◽  
pp. 45
Author(s):  
Lukas Jasiūnas ◽  
Thomas Helmer Pedersen ◽  
Lasse Aistrup Rosendahl

The potential of using cold water brown macroalgae Fucus vesiculosus for biocrude production via non-catalytic supercritical hydrothermal liquefaction (HTL) was studied. Demineralization, residue neutralization, and high value-added product (alginate and fucoidan) extraction processes were carried out before using the biomass for HTL biocrude production. Acid leaching was carried out using three demineralization agents: distilled water, dilute citric acid solution, and the diluted acidic aqueous by-product from a continuous HTL pilot facility. Alginate was extracted via H2SO4 and NaCO3 bathing, and fucoidan was extracted using CaCl2. Experimental data show that none of the leaching agents was greatly efficient in removing inorganics, with citric acid leaching with extensive neutralization reaching the highest ash removal efficiency of 47%. The produced 6 sets of biocrudes were characterized by elemental and thermogravimetric analyses. Short (10-min retention) HTL and the extent of leaching residue neutralization were also investigated. Highest biocrude yields were recorded when liquefying non-neutralized citric acid leaching, alginate, and fucoidan extraction residues. On the other hand, thermochemical conversions of short retention time HTL, full neutralization extent, and baseline (dried raw macroalgae) biomass performed worse. Specifically, the highest biocrude yield of 28.2 ± 2.5 wt.% on dry ash-free feedstock basis was recorded when liquefying alginate extraction residues. Moreover, the highest energy recovery of 52.8% was recorded when converting fucoidan extraction residues.


2022 ◽  
Vol 23 (1) ◽  
pp. 258-267
Author(s):  
Nur'Aishah Ahmad Shahrim ◽  
Norshahida Sarifuddin ◽  
Ahmad Zahirani Ahmad Azhar ◽  
Hafizah Hanim Mohd Zaki

The typical petroleum-based plastics have triggered environmental problems. For this purpose, biodegradable polymers such as starch are often used to manufacture biodegradable plastics. At present, the efforts are underway to extract starch as a promising biopolymer from mango seeds and subsequently to produce a biodegradable starch film to be used as plastic packaging. As such, in this work, glycerol-plasticized mango starch films were prepared using a solution casting process, using different amounts of citric acid as a cross-linking agent. The blend ratio of starch to glycerol was set at 3:5 wt. each, while the amount of citric acid ranged from 0 to 10 wt.%. Then, the casted films underwent 21 days of soil burial testing in the natural environment to determine their biodegradability behavior. The soil burial test is one of the common methods chosen to assess the biodegradability of polymers. The idea is that, by burying samples in the soil for a fixed time, samples are exposed to microorganisms (i.e. bacteria and fungi) present in the soil that serve as their food source. This is somehow likely to facilitate the process of deterioration. For this reason, the soil burial test can be regarded as an authentic approach to the process of deterioration in the natural environment. The films' susceptibility to biodegradation reactions was assessed within intervals of seven days through their physical appearance and weight loss. Interestingly, it was found that the cross-linked starch films have been observed to degrade slower than the non-cross-linked starch films as burial time progressed. The declining percentages of weight loss, as well as the presence of microorganisms and eroded surface on the films observed by SEM, explained the degradation behavior of the cross-linked starch films compared to the non-cross-linked starch films. Hence it is believed that cross-linked starch-glycerol films are biodegradable in soil, henceforth, the potential to be commercialized as a biodegradable packaging material soon. At the same time, this plastic packaging is expected to be recognized as a value-added product since the raw materials ergo mango seeds utilized to develop this product are from waste, therefore, environmentally friendly. ABSTRAK: Plastik yang berasaskan petroleum telah mencetuskan masalah persekitaran. Untuk tujuan ini, polimer biodegradasi seperti kanji sering digunakan untuk membuat plastik yang boleh terurai. Pada masa ini, usaha sedang dilakukan untuk mengekstrak pati sebagai biopolimer yang menjanjikan dari biji mangga dan kemudiannya menghasilkan filem pati yang terbiodegradasi untuk digunakan sebagai kemasan plastik. Oleh yang demikian, dalam karya ini, filem pati mangga plastik-gliserol disusun menggunakan proses pemutus larutan, menggunakan jumlah asid sitrik yang berlainan sebagai agen penghubung silang. Nisbah campuran pati dan gliserol ditetapkan pada 3:5 wt.% masing-masing, sementara jumlah asid sitrik berkisar antara 0 hingga 10 wt.% berat. Kemudian, sampel plastik tersebut ditanam di dalam tanah selama 21 hari di persekitaran semula jadi untuk menentukan tingkah laku biodegradasinya. Ujian penguburan tanah adalah salah satu kaedah biasa yang dipilih untuk menilai biodegradasi polimer. Ideanya adalah bahawa, dengan menguburkan sampel di tanah untuk waktu yang tetap, sampel terdedah kepada mikroorganisma (iaitu bakteria dan jamur) yang terdapat di dalam tanah yang berfungsi sebagai sumber makanan mereka. Ini mungkin memudahkan proses kemerosotan. Atas sebab ini, ujian penguburan tanah dapat dianggap sebagai pendekatan yang sahih terhadap proses kemerosotan di persekitaran semula jadi. Kerentanan filem terhadap reaksi biodegradasi dinilai dalam selang waktu tujuh hari melalui penampilan fizikal dan penurunan berat badan. Menariknya, didapati bahawa filem-filem pati berangkai silang telah dilihat menurun lebih perlahan daripada filem-filem pati yang tidak bersilang ketika masa pengebumian berlangsung. Peratusan penurunan berat badan yang menurun, serta kehadiran mikroorganisma dan permukaan yang terhakis pada filem yang diperhatikan oleh SEM, menjelaskan tingkah laku degradasi filem pati berangkai silang berbanding dengan filem pati yang tidak bersilang. Oleh itu, dipercayai bahawa filem kanji-gliserol berangkai silang dapat terbiodegradasi di dalam tanah, dan seterusnya, potensi untuk dikomersialkan sebagai bahan pembungkusan yang boleh terurai tidak lama lagi. Pada masa yang sama, pembungkusan plastik ini diharapkan dapat diakui sebagai produk bernilai tambah kerana bahan mentah ergo mangga yang digunakan untuk mengembangkan produk ini adalah dari sisa, oleh itu, mesra alam.


Sign in / Sign up

Export Citation Format

Share Document