scholarly journals Biomass-Derived Nitrogen-Doped Porous Carbon for Highly Efficient Ambient Electro-Synthesis of NH3

Catalysts ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 353
Author(s):  
Qinglin Li ◽  
Xiufang Chen ◽  
Yong Yang

In this communication, we report a biomass-derived nitrogen-doped porous carbon (named as NC-800) as an electrocatalyst for the ambient conversion of N2 to NH3. The catalyst NC-800 was prepared from naturally renewable and easily available bamboo shoots, with inherently an approximate 8 wt % of N-containing components, such as the N source, in a cost-effective and environmentally benign manner. This exhibited remarkable catalytic activity with a large NH3 yield and a Faradaic efficiency as high as 16.3 μg h−mg-1cat and 27.5%, respectively, at −0.35 V versus a reversible hydrogen electrode (RHE) in 0.1 M HCl solution at ambient conditions. More importantly, the catalyst NC-800 demonstrated excellent electrochemical selectivity and stability.

2019 ◽  
Vol 7 (34) ◽  
pp. 19977-19983 ◽  
Author(s):  
Wei Xiong ◽  
Zheng Guo ◽  
Shijun Zhao ◽  
Qian Wang ◽  
Qiyong Xu ◽  
...  

A non-precious, self-supportive FeSx NRR electrocatalyst was synthesized by a simple H2S-plasma treatment on low-cost Fe foam, which shows a remarkable NH3 production rate of 4.13 × 10−10 mol s−1 cm−2 and a high faradaic efficiency of 17.6%.


Catalysts ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 802
Author(s):  
Chang Sun ◽  
Yingxin Mu ◽  
Yuxin Wang

Electrochemical ammonia synthesis, which is an alternative approach to the Haber–Bosch process, has attracted the attention of researchers because of its advantages including mild working conditions, environmental protection, and simple process. However, the biggest problem in this field is the lack of high-performance catalysts. Here, we report high-efficiency electroreduction of N2 to NH3 on γ-MnO2-supported Pd nanoparticles (Pd/γ-MnO2) under ambient conditions, which exhibits excellent catalytic activity with an NH3 yield rate of 19.72 μg·mg−1Pd h−1 and a Faradaic efficiency of 8.4% at −0.05 V vs. the reversible hydrogen electrode (RHE). X-ray diffraction (XRD) and transmission electron microscopy (TEM) characterization shows that Pd nanoparticles are homogeneously dispersed on the γ-MnO2. Pd/γ-MnO2 outperforms other catalysts including Pd/C and γ-MnO2 because of its synergistic catalytic effect between Pd and Mn.


2020 ◽  
Vol 8 (1) ◽  
pp. 77-81 ◽  
Author(s):  
Runbo Zhao ◽  
Chuangwei Liu ◽  
Xiaoxue Zhang ◽  
Xiaojuan Zhu ◽  
Peipei Wei ◽  
...  

A Ru2P–reduced graphene oxide hybrid acts as a superior catalyst for electrochemical N2 fixation in 0.1 M HCl, achieving a large NH3 yield of 32.8 μg h−1mgcat.−1 and a high faradaic efficiency of 13.04%−0.05 V vs. the reversible hydrogen electrode.


RSC Advances ◽  
2020 ◽  
Vol 10 (17) ◽  
pp. 9976-9984 ◽  
Author(s):  
Wenhua Tong ◽  
Yi Xie ◽  
Wanrong Hu ◽  
Yuanyuan Peng ◽  
Wenbin Liu ◽  
...  

Cost-effective and environmentally benign biomass precursor enabled synthesis of CoP/N-doped porous carbon nanocomposite for BPA removal through adsorption and peroxymonosulfate activation.


ChemSusChem ◽  
2018 ◽  
Vol 11 (19) ◽  
pp. 3388-3395 ◽  
Author(s):  
Yanyan Sun ◽  
Shuang Li ◽  
Zarko Petar Jovanov ◽  
Denis Bernsmeier ◽  
Huan Wang ◽  
...  

2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Yang Fu ◽  
Peter Richardson ◽  
Kangkang Li ◽  
Hai Yu ◽  
Bing Yu ◽  
...  

AbstractAchieving more meaningful N2 conversion by reducing the energy input and carbon footprint is now being investigated through a method of N2 fixation instead of the Haber–Bosch process. Unfortunately, the electrochemical N2 reduction reaction (NRR) method as a rising approach currently still shows low selectivity (Faradaic efficiency < 10%) and high-energy consumption [applied potential at least − 0.2 V versus the reversible hydrogen electrode (RHE)]. Here, the role of molybdenum aluminum boride single crystals, belonging to a family of ternary transition metal aluminum borides known as MAB phases, is reported for the electrochemical NRR for the first time, at a low applied potential (− 0.05 V versus RHE) under ambient conditions and in alkaline media. Due to the unique nano-laminated crystal structure of the MAB phase, these inexpensive materials have been found to exhibit excellent electrocatalytic performances (NH3 yield: 9.2 µg h−1 cm−2 mg cat. −1 , Faradaic efficiency: 30.1%) at the low overpotential, and to display a high chemical stability and sustained catalytic performance. In conjunction, further mechanism studies indicate B and Al as main-group metals show a highly selective affinity to N2 due to the strong interaction between the B 2p/Al 3p band and the N 2p orbitals, while Mo exhibits specific catalytic activity toward the subsequent reduction reaction. Overall, the MAB-phase catalyst under the synergy of the elements within ternary compound can suppress the hydrogen evolution reaction and achieve enhanced NRR performance. The significance of this work is to provide a promising candidate in the future synthesis of ammonia.


2019 ◽  
Vol 55 (96) ◽  
pp. 14474-14477 ◽  
Author(s):  
Chengbo Li ◽  
Shiyong Mou ◽  
Xiaojuan Zhu ◽  
Fengyi Wang ◽  
Yuting Wang ◽  
...  

Dendritic Cu behaves as an efficient electrocatalyst for ambient N2-to-NH3 fixation with a high Faradaic efficiency of 15.12% and a large NH3 yield rate of 25.63 μg h−1 mgcat.−1 at −0.40 V versus reversible hydrogen electrode in 0.1 M HCl.


2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Ying Sun ◽  
Zizhao Deng ◽  
Xi-Ming Song ◽  
Hui Li ◽  
Zihang Huang ◽  
...  

AbstractElectrocatalytic nitrogen reduction reaction is a carbon-free and energy-saving strategy for efficient synthesis of ammonia under ambient conditions. Here, we report the synthesis of nanosized Bi2O3 particles grown on functionalized exfoliated graphene (Bi2O3/FEG) via a facile electrochemical deposition method. The obtained free-standing Bi2O3/FEG achieves a high Faradaic efficiency of 11.2% and a large NH3 yield of 4.21 ± 0.14 $$ \upmu{\text{g}}_{{{\text{NH}}_{3} }} $$ μ g NH 3  h−1 cm−2 at − 0.5 V versus reversible hydrogen electrode in 0.1 M Na2SO4, better than that in the strong acidic and basic media. Benefiting from its strong interaction of Bi 6p band with the N 2p orbitals, binder-free characteristic, and facile electron transfer, Bi2O3/FEG achieves superior catalytic performance and excellent long-term stability as compared with most of the previous reported catalysts. This study is significant to design low-cost, high-efficient Bi-based electrocatalysts for electrochemical ammonia synthesis.


2020 ◽  
Vol 8 (18) ◽  
pp. 9091-9098 ◽  
Author(s):  
Yizhen Zhang ◽  
Jue Hu ◽  
Chengxu Zhang ◽  
Yizhe Liu ◽  
Mengyuan Xu ◽  
...  

The Mo–Co bimetallic nanoparticles anchored on the nitrogen-doped porous carbon (Mo–Co/NC) are developed and serve as a cost-effective catalyst candidate for the NRR.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Xuewan Wang ◽  
Dan Wu ◽  
Suyun Liu ◽  
Jiujun Zhang ◽  
Xian-Zhu Fu ◽  
...  

AbstractEfficient and robust single-atom catalysts (SACs) based on cheap and earth-abundant elements are highly desirable for electrochemical reduction of nitrogen to ammonia (NRR) under ambient conditions. Herein, for the first time, a Mn–N–C SAC consisting of isolated manganese atomic sites on ultrathin carbon nanosheets is developed via a template-free folic acid self-assembly strategy. The spontaneous molecular partial dissociation enables a facile fabrication process without being plagued by metal atom aggregation. Thanks to well-exposed atomic Mn active sites anchored on two-dimensional conductive carbon matrix, the catalyst exhibits excellent activity for NRR with high activity and selectivity, achieving a high Faradaic efficiency of 32.02% for ammonia synthesis at  − 0.45 V versus reversible hydrogen electrode. Density functional theory calculations unveil the crucial role of atomic Mn sites in promoting N2 adsorption, activation and selective reduction to NH3 by the distal mechanism. This work provides a simple synthesis process for Mn–N–C SAC and a good platform for understanding the structure-activity relationship of atomic Mn sites. Graphic Abstract


Sign in / Sign up

Export Citation Format

Share Document