scholarly journals Synthesis of Biogenic Palladium Nanoparticles Using Citrobacter sp. for Application as Anode Electrocatalyst in a Microbial Fuel Cell

Catalysts ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 838
Author(s):  
Mpumelelo Thomas Matsena ◽  
Shepherd Masimba Tichapondwa ◽  
Evans Martin Nkhalambayausi Chirwa

Palladium (Pd) is a cheap and effective electrocatalyst that is capable of replacing platinum (Pt) in various applications. However, the problem in using chemically synthesized Pd nanoparticles (PdNPs) is that they are mostly fabricated using toxic chemicals under severe conditions. In this study, we present a more environmentally-friendly process in fabricating biogenic Pd nanoparticles (Bio-PdNPs) using Citrobacter sp. isolated from wastewater sludge. Successful fabrication of Bio-PdNPs was achieved under anaerobic conditions at pH six and a temperature of 30 °C using sodium formate (HCOONa) as an electron donor. Citrobacter sp. showed biosorption capabilities with no enzymatic contribution to Pd(II) uptake during absence of HCOONa in both live and dead cells. Citrobacter sp. live cells also displayed high enzymatic contribution to the removal of Pd(II) by biological reduction. This was confirmed by Scanning Electron Microscope (SEM), Electron Dispersive Spectroscopy (EDS), and X-ray Diffraction (XRD) characterization, which revealed the presence Bio-PdNPs deposited on the bacterial cells. The bio-PdNPs successfully enhanced the anode performance of the Microbial Fuel Cell (MFC). The MFC with the highest Bio-PdNPs loading (4 mg Bio-PdNP/cm2) achieved a maximum power density of 539.3 mW/m3 (4.01 mW/m2) and peak voltage of 328.4 mV.

2017 ◽  
Vol 13 (18) ◽  
pp. 242
Author(s):  
Adegunloye D. V ◽  
Olotu T. M

Generating electricity using microbial fuel cell powered by benthic mud collected from two locations in Akure was carried out. The locations were Riverbed of FUTA and Apatapiti area of Akure. This was achieved by building anode and cathode containers connected together by a salt bridge and an external circuit was made to transfer the electrons from the anode to the cathode. Bacteria and fungi were isolated from the benthic mud for eight days using standard microbiological techniques. Lactobacillus plantarum, Escherichia coli, Bacillus subtilis, Enterobacter aerogenes, Trichoderma sp, Mucor sp and Alterania sp; Lactobacillus plantarum, Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis, Myrothecium sp and Geotrichum candidum were bacteria and fungi isolated from the benthic mud of Apatapiti area and Riverbed of Futa, Akure respectively. This was used for the generation of electricity using unsterilized mud sample and the control setup was sterilized mud from same source. The set-up was monitored every 24hrous to determine the voltage and current generated. The pH, concentration and temperature were measured. The temperature remains constant throughout the experiment. The set-up were operated at a normal temperature of 27oC and 29oC for Riverbed of FUTA and Apatapiti area of Akure respectively. The peak voltage was between 182.5V and 192.5V and current produced from the main set-up was between 0.3A to 0.53A for Futa river bed while for Apatapiti area of Akure the peak voltage and current were 192.5V and 0.3A respectively. Higher microbial population, current and voltage were observed to be generated in River bed of Futa than Apatapiti area. The difference in the voltage and current and the control set-up shows that anaerobic microorganisms are capable of producing electricity from microbial fuel cell under appropriate conditions.


Author(s):  
Yulia Plekhanova ◽  
Sergey Tarasov ◽  
Vladimir Kolesov ◽  
Iren Kuznetsova ◽  
Maria Signore ◽  
...  

The anode of a microbial fuel cell (MFC) was formed on a graphite electrode and immobilized Gluconobacter oxydans VKM-1280 bacterial cells. Immobilization was performed in chitosan, poly(vinyl alcohol) or N-vinylpyrrolidone-modified poly(vinyl alcohol). Ethanol was used as substrate. The anode was modified using multiwalled carbon nanotubes. The aim of the modification was to create a conductive network between cell lipid membranes, containing exposed PQQ-dependent alcoholdehydrogenases, and the electrode to facilitate electron transfer in the system. The bioelectrochemical characteristics of modified anodes at various cell/polymer ratios were assessed via current density, power density, polarization curves and impedance spectres. MFCs based on chitosan at a matrix/cell volume ratio of 5:1 produced maximal power characteristics of the system (8.3 μW/cm2) at a minimal resistance (1111 Ohm cm2). Modification of the anode by multiwalled carbon nanotubes led to a slight decrease of internal resistance (down to 1078 Ohm cm2) and to an increase of generated power density up to 10.6 μW/cm2. We explored the possibility of accumulating electric energy from an MFC on a 6,800-μF capacitor via a boost converter. Generated voltage was increased from 0.3 V up to 3.2 V. Accumulated energy was used to power a Clark-type biosensor and a bluetooth transmitter with three sensors, a miniature electric motor and a light-emitting diode.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Gaixiu Yang ◽  
Dong Chen ◽  
Pengmei Lv ◽  
Xiaoying Kong ◽  
Yongming Sun ◽  
...  

Sensors ◽  
2019 ◽  
Vol 19 (24) ◽  
pp. 5452 ◽  
Author(s):  
Jong Hyun Cho ◽  
Yang Gao ◽  
Seokheun Choi

Human access to safe water has become a major problem in many parts of the world as increasing human activities continue to spill contaminants into our water systems. To guarantee the protection of the public as well as the environment, a rapid and sensitive way to detect contaminants is required. In this work, a paper-based microbial fuel cell was developed to act as a portable, single-use, on-site water quality sensor. The sensor was fabricated by combining two layers of paper for a simple, low-cost, and disposable design. To facilitate the use of the sensor for on-site applications, the bacterial cells were pre-inoculated onto the device by air-drying. To eliminate any variations, the voltage generated by the microorganism before and after the air-drying process was measured and calculated as an inhibition ratio. Upon the addition of different formaldehyde concentrations (0%, 0.001%, 0.005%, and 0.02%), the inhibition ratios obtained were 5.9 ± 0.7%, 6.9 ± 0.7%, 8.2 ± 0.6%, and 10.6 ± 0.2%, respectively. The inhibition ratio showed a good linearity with the formaldehyde concentrations at R2 = 0.931. Our new sensor holds great promise in monitoring water quality as a portable, low-cost, and on-site sensor.


2016 ◽  
Vol 35 (1) ◽  
pp. 47-55 ◽  
Author(s):  
Ademola Adekunle ◽  
Vijaya Raghavan

In a number of energy-poor nations, peel from cassava processing represents one of the most abundant sources of lignocellulosic biomass. This peel is mostly discarded indiscriminately and eventually constitutes a problem to the environment. However, energy can be extracted from this peel in a microbial fuel cell. In this study, the viability of cassava peel extract as a substrate in a single-chamber air cathode microbial fuel cell is demonstrated, and optimum performance conditions are explored. The effects of different pretreatments on the extract are also discussed in the context of observed changes in the internal resistances, conductivity and Coulombic efficiencies. At the best conditions examined, the extract from cassava peel fermented for 168 h and adjusted to a pH of 7.63 attained a peak voltage of 687 mV ± 21 mV, a power density of 155 mW m−3 of reactor volume and a Coulombic efficiency of 11 %. Although this energy is limited to direct use, systems exist that can effectively harvest and boost the energy to levels sufficient for supplementary energy usage in cassava producing regions.


2015 ◽  
Vol 3 (1) ◽  
pp. 9-18
Author(s):  
Ali J. Jaeel

Chicken manure wastewaters are increasingly being considered a valuable resource of organic compounds. Screened chicken manure was evaluated as a representative solid organic waste. In this study, electricity generation from livestock wastewater (chicken manure) was investigated in a continuous mediator-less horizontal flow microbial fuel cell with graphite electrodes and a selective type of membrane separating the anodic and cathodic compartments of MFC from each other. The performance of MFC was evaluated to livestock wastewater using aged anaerobic sludge. Results revealed that COD and BOD removal efficiencies were up to 88% and 82%, respectively. At an external resistance value of 150 Ω, a maximum power and current densities of 278 m.W/m2 and 683 mA/m2, respectively were obtained, hence MFC utilizing livestock wastewater would be a sustainable and reliable source of bio-energy generation .


Sign in / Sign up

Export Citation Format

Share Document