scholarly journals Silica-Related Catalysts for CO2 Transformation into Methanol and Dimethyl Ether

Catalysts ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1282
Author(s):  
Isabel Barroso-Martín ◽  
Antonia Infantes-Molina ◽  
Fatemeh Jafarian Fini ◽  
Daniel Ballesteros-Plata ◽  
Enrique Rodríguez-Castellón ◽  
...  

The climate situation that the planet is experiencing, mainly due to the emission of greenhouse gases, poses great challenges to mitigate it. Since CO2 is the most abundant greenhouse gas, it is essential to reduce its emissions or, failing that, to use it to obtain chemicals of industrial interest. In recent years, much research have focused on the use of CO2 to obtain methanol, which is a raw material for the synthesis of several important chemicals, and dimethyl ether, which is advertised as the cleanest and highest efficiency diesel substitute fuel. Given that the bibliography on these catalytic reactions is already beginning to be extensive, and due to the great variety of catalysts studied by the different research groups, this review aims to expose the most important catalytic characteristics to take into account in the design of silica-based catalysts for the conversion of carbon dioxide to methanol and dimethyl ether.

2020 ◽  
pp. 94-110
Author(s):  
N.V. Dvoeglazova ◽  
B.V. Chubarenko ◽  
Y.A. Kozlova

The increase in greenhouse gases in the atmosphere is influenced to a greater extent by a degree of development of industry, a growth of electrification, deforestation, and the burning of fuel for the production of heating and electricity. The contribution of emissions of each of these factors and the ratio of greenhouse gases in them should be taken into account when developing the measures to prevent climate change. According to calculations of emissions from the territory of the Kaliningrad region the burning of fuel and energy resources are supposed to be playing the main role in the greenhouse gas emission from the territory of the Kaliningrad region. In statistical reference books this activity is described as the “activities for the production and distribution of electricity, gas and water.” The usage of this fuel in the energy sector is increasing: from 1742.4 thousand tons of standard fuel in 1991 up to 2193.9 in 2016. Such little increase in total emissions is due to the general technology improvement in the country. Carbon dioxide makes up the bulk of greenhouse gas emissions from the territory of the Kaliningrad region. The percentage of the gases in the total volume is as follows: CO2 - 96.7%, CH4 - 1%, N2 O - 2.3%. Its emissions for the period from 2013 to 2016 varied from 3,757.4 in 2014 to 4,091.7 in 2015 thousand tons of standard fuel, reaching its maximum value in 2015. The estimate presented in this paper is a lower estimate, since it does not take into account emissions from industrial processes, leaks, land use, waste, etc., as well as from some categories of emission sources due to the lack of data on the use of fuel in the Kaliningrad region. Among other things, the calculations of emissions of carbon dioxide, methane and nitrous oxide from the use of fuel by vehicles in 2016, which have shown to be 1.86 times less than from burning of fossil fuels for the same year (2032.87 Gg CO2 eq. and 3914.79 Gg CO2 eq., respectively) and to account for 34.5% of the total emissions, have been made. Moreover, according to the methodology for calculating emissions the factor of carbon dioxide absorption by the region’s forests has been taken into account. The amount of carbon dioxide absorbed by forests has shown to be only 11.9% of the emissions of this gas during the combustion of boiler and furnace fuel.


2018 ◽  
Vol 25 (3) ◽  
pp. 383-394 ◽  
Author(s):  
Marta Marszałek ◽  
Zygmunt Kowalski ◽  
Agnieszka Makara

Abstract Pig slurry is classified as a natural liquid fertilizer, which is a heterogeneous mixture of urine, faeces, remnants of feed and technological water, used to remove excrement and maintain the hygiene of livestock housing. The storage and distribution of pig slurry on farmland affect the environment as they are associated with, among others, the emission of various types of gaseous pollutants, mainly CH4, CO2, N2O, NH3, H2S, and other odorants. Methane (CH4), carbon dioxide (CO2) and nitrous oxide (N2O) are greenhouse gases (GHGs) which contribute to climate change by increasing the greenhouse effect. Ammonia (NH3) and hydrogen sulfide (H2S) are malodorous gases responsible for the occurrence of odour nuisance which, due to their toxicity, may endanger the health and lives of humans and animals. NH3 also influences the increase of atmosphere and soil acidification. The article presents the environmental impact of greenhouse gases and odorous compounds emitted from pig slurry. Key gaseous atmospheric pollutants such as NH3, H2S, CH4, CO2 and N2O have been characterized. Furthermore, methods to reduce the emission of odours and GHGs from pig slurry during its storage and agricultural usage have been discussed.


2021 ◽  
pp. 96-121
Author(s):  
Raymond T. Pierrehumbert

‘Planetary climate and habitability’ studies planetary climate, particularly the way an atmosphere affects temperature and a planet's habitability. The entire temperature profile, from the planet's centre to the tenuous outer reaches of its atmosphere (if it has one), is of importance. Real atmospheres are never completely transparent to the infrared radiation which seeks to escape to space. Gases which are good absorbers of infrared radiation act as planetary insulation. This is the greenhouse effect, and gases that are good infrared absorbers are called greenhouse gases; carbon dioxide is an important greenhouse gas for Earth.


Agronomy ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1633
Author(s):  
Christoph Emmerling ◽  
Andreas Krein ◽  
Jürgen Junk

The intensification of livestock production, to accommodate rising human population, has led to a higher emission of ammonia into the environment. For the reduction of ammonia emissions, different management steps have been reported in most EU countries. Some authors, however, have criticized such individual measures, because attempts to abate the emission of ammonia may lead to significant increases in either methane, nitrous oxide, or carbon dioxide. In this study, we carried out a meta-analysis of experimental European data published in peer-reviewed journals to evaluate the impact of major agricultural management practices on ammonia emissions, including the pollution swapping effect. The result of our meta-analysis showed that for the treatment, storage, and application stages, only slurry acidification was effective for the reduction of ammonia emissions (−69%), and had no pollution swapping effect with other greenhouse gases, like nitrous oxide (−21%), methane (−86%), and carbon dioxide (−15%). All other management strategies, like biological treatment, separation strategies, different storage types, the concealing of the liquid slurry with different materials, and variable field applications were effective to varying degrees for the abatement of ammonia emission, but also resulted in the increased emission of at least one other greenhouse gas. The strategies focusing on the decrease of ammonia emissions neglected the consequences of the emissions of other greenhouse gases. We recommend a combination of treatment technologies, like acidification and soil incorporation, and/or embracing emerging technologies, such as microbial inhibitors and slow release fertilizers.


1999 ◽  
Vol 26 (3) ◽  
pp. 166-168 ◽  
Author(s):  
TIM NEWCOMB

Many nations have recognized the need to reduce the emissions of greenhouse gases (GHGs). The scientific assessments of climate change of the Intergovernmental Panel on Climate Change (IPCC) support the need to reduce GHG emissions. The 1997 Kyoto Protocol to the 1992 Convention on Climate Change (UNTS 30822) has now been signed by more than 65 countries, although that Protocol has not yet entered into force. Some 14 of the industrialized countries listed in the Protocol face reductions in carbon dioxide emissions of more than 10% compared to projected 1997 carbon dioxide emissions (Najam & Page 1998).


2020 ◽  
Author(s):  
Fallon Fowler ◽  
Christopher J. Gillespie ◽  
Steve Denning ◽  
Shuijin Hu ◽  
Wes Watson

AbstractBy mixing and potentially aerating dung, dung beetles may affect the microbes producing the greenhouse gases (GHGs): carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O). Here, their sum-total global warming effect is described as the carbon dioxide equivalent (CO2e). Our literature analysis of reported GHG emissions and statistics suggests that most dung beetles do not, however, reduce CO2e even if they do affect individual GHGs. Here, we compare the GHG signature of homogenized (“premixed”) and unhomogenized (“unmixed”) dung with and without dung beetles to test whether mixing and burial influence GHGs. Mixing by hand or by dung beetles did not reduce any GHG – in fact, tunneling dung beetles increased N2O medians by ≥1.8x compared with dung-only. This suggests that either: 1) dung beetles do not meaningfully mitigate GHGs as a whole; 2) dung beetle burial activity affects GHGs more than mixing alone; or 3) greater dung beetle abundance and activity is required to produce an effect.


Author(s):  
Nilesh C. Dhavane ◽  
Dr. Parashuram R. Chitragar

The aim of this research work is to utilize the available poultry litter as a substitutional fuel in cogeneration power plant in the sugar factory. In India, tons of poultry litter is damaging the fields due to uncontrolled disposal of poultry litter as fertilizer. It also contributes to the emission of greenhouse gases namely methane and carbon dioxide thus polluting the atmosphere. About 100 tons per day manure can be collected which can be used as fuel source at the location selected. With this amount of fuel available, energy can be generated in the cogeneration power plant. ost feasible of this work that can be implemented in cogeneration power plant in sugar factory.


2021 ◽  
pp. 54-61
Author(s):  
N. V. Popov ◽  
◽  
I. L. Govor ◽  
M. L. Gitarskii ◽  
◽  
...  

The average weighted long-term component composition of associated petroleum gas burned at the fields in Russia is obtained, where the volume fractions of carbon dioxide (CO2) and methane (CH4) make up 0.8 and 66.4%, respectively. Based on it, the national emission factors of greenhouse gases from the flaring of associated petroleum gas are developed: the values are equal to 2.76 103 t CO2 and 0.0155 103 t CH4 per 1 106 m3 of the gas burnt. The calculations based on the emission factors led to the 37% increase in total equivalent emission of CO2 and CH4 as compared to the calculations based on the IPCC emission factors. The use of the national emission factors increases the reliability of the estimates of greenhouse gas emissions and the evaluation of their impact on climate.


2021 ◽  
Vol 16 (3) ◽  
pp. 38-42
Author(s):  
Ramil Khafizov ◽  
Farit Khaliullin ◽  
Kamil Khafizov ◽  
Azat Nurmiev ◽  
Stanislav Sinickiy ◽  
...  

The article provides an overview of the state of the art related to the emission of greenhouse gases into the atmosphere during the operation of mobile machine-tractor units in the agricultural sector of the economy. Sources of greenhouse gas emissions are considered. It was revealed that a huge amount of greenhouse gases are emitted into the atmosphere due to intensive soil cultivation, while the emission of CO2, NOX and CH4 is many times higher than the emission of these gases from fuel combustion in the engines of machine and tractor units. However, taking into account the large areas of arable land in the Russian Federation, reducing the emission of greenhouse gases with exhaust gases (OG) of engines is an urgent task. The article discusses the composition of the exhaust gases of a diesel engine and methods of binding environmentally harmful substances, considers ways to reduce the emission of toxic components of exhaust gas. It was revealed that of the gases contributing to the formation of the greenhouse effect on the ground, up to 10% of exhaust gases contain carbon dioxide. In this regard, the ways of reducing the emission of carbon dioxide from the engines of machine-tractor units are being analyzed, the tasks of research on the binding of CO2 in soil and plants are set, by using some chemical fertilizers as substitutes, for heating the soil at the time of sowing and activating the vital activity of beneficial microorganisms in it. It is stated that one of the ways to reduce CO2 emissions into the atmosphere is to search for ways to reduce direct and indirect energy costs during the operation of machine-tractor units, including by reducing crop losses due to incorrectly selected parameters of tractors and agricultural machines, neg


Sign in / Sign up

Export Citation Format

Share Document