scholarly journals Mechanochemical Preparation of Novel Polysaccharide-Supported Nb2O5 Catalysts

Catalysts ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 38 ◽  
Author(s):  
Esther Rincon ◽  
Araceli Garcia ◽  
Antonio A. Romero ◽  
Luis Serrano ◽  
Rafael Luque ◽  
...  

Polysaccharides extracted from natural sources can be used as starting material for the preparation of nanoparticle supported composites. A novel family of bio-nanocomposites was mechanochemically synthesized by using niobium oxide and enzymatically produced polysaccharides. The structural, textural and surface properties of nanomaterials, were determined by X-Ray diffraction (XRD), nitrogen adsorption-desorption (N₂ porosimetry), pulse chromatography, infrared spectroscopy (ATR-IR) and dynamic light scattering (DLS). Selective oxidation of isoeugenol to vanillin was carried out to demonstrate the catalytic activity of the Nb-polysaccharides nanocomposites. Interestingly, most of our material showed high conversion of isoeugenol (60–70%) with selectivity to vanillin over 40%. The optimum conversion and selectivity were achieved with a reaction time between 8 and 24 h.

2021 ◽  
Vol 21 (12) ◽  
pp. 6082-6087
Author(s):  
Chih-Wei Tang ◽  
Hsiang-Yu Shih ◽  
Ruei-Ci Wu ◽  
Chih-Chia Wang ◽  
Chen-Bin Wang

The increase of harmful carbon monoxide (CO) caused by incomplete combustion can affect human health even lead to suffocation. Therefore reducing the CO discharged by vehicles or factories is urgent to improve the air quality. The spinel cobalt (II, III) oxide (Co3O4) is an active catalyst for CO abatement. In this study, we tried to fabricate dispersing Co3O4 via the dispersion-precipitation method with acetic acid, formic acid, and oxalic acid as the chelating dispersants. Then, the asprepared samples were calcined at 300 ºC for 4 h to obtain active catalysts, and assigned as Co(A), Co(F) and Co(O) respectively, the amount of the dispersants used are labeled as I (0.12 mole), II (0.03 mole) and III (0.01 mole). For comparison, another CoAP sample was prepared via alkaliinduced precipitation and calcined at 300 ºC. All samples were characterized by X-ray diffraction (XRD), temperature-programmed reduction (TPR), scanning electron microscope (SEM), and nitrogen adsorption/desorption system, and the catalytic activity focused on the CO oxidation. The influence of chelating dispersant on the performance of abatement of CO was pursued in this study. Apparently, the results showed that the chelating dispersant can influence the catalytic activity of CO abatement. An optimized ratio of dispersant can improve the performance, while excess dispersant lessens the surface area and catalytic performance. The series of Co(O) samples can easily donate the active oxygen since the labile Co–O bonding and indicated the preferential performance than both Co(A) and Co(F) samples. The nanorod Co(O)-II showed preferential for CO oxidation, T50 and T90 approached 96 and 127 ºC, respectively. Also, the favorable durability of Co(O)-II sample maintains 95% conversion still for 50 h at 130 ºC and does not emerge deactivation.


2021 ◽  
Vol 16 (1) ◽  
pp. 88-96
Author(s):  
Mukhamad Nurhadi ◽  
Ratna Kusumawardani ◽  
Teguh Wirawan ◽  
Sumari Sumari ◽  
Sin Yuan Lai ◽  
...  

The catalytic performance of titania-supported carbon mesoporous-derived from fish bones (TiO2/CFB) has been investigated in styrene oxidation with aqueous H2O2. The preparation steps of (TiO2/CFB) catalyst involved the carbonization of fish bones powder at 500 °C for 2 h. followed by impregnation of titania using titanium(IV) isopropoxide (500 µmol) precursor, and calcined at 350 °C for 3 h. The physical properties of the adsorbents were characterized using Fourier transform infrared, X-ray diffraction (XRD), Scanning electron microscopy with energy dispersive X-ray (SEM-EDX), and nitrogen adsorption-desorption studies. The catalytic test was carried out using styrene oxidation with H2O2 as an oxidant at room temperature for 24 h. Its catalytic activity was compared with Fe2O3/CFB, CuO/CFB, TiO2, and CFB catalysts. It is demonstrated that the catalytic activity of TiO2/CFB catalyst has the highest compared to Fe2O3/CFB, CuO/CFB, TiO2, and CFB catalysts in the oxidation of styrene with styrene conversion ~23% and benzaldehyde selectivity ~90%. Kinetics of TiO2/CFB catalyzed oxidation of styrene has been investigated and mechanism for oxidation of styrene has been proposed. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA   License (https://creativecommons.org/licenses/by-sa/4.0). 


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Li-Na Jin ◽  
Jian-Guo Wang ◽  
Xin-Ye Qian ◽  
Dan Xia ◽  
Ming-Dong Dong

Nano-Co3O4with different morphologies was successfully synthesized by annealing CoC2O4·2H2O precursors. The as-obtained samples were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), and low-temperature nitrogen adsorption-desorption. It was found that the volume ratio of N,N-dimethylformamide (DMF) and water played an important role in the formation of cobalt oxalate precursors with different morphologies. After calcination in air, cobalt oxalate precursors converted to Co3O4nanomaterials while their original morphologies were maintained. The catalytic effect was investigated for nano-Co3O4with different morphologies on the thermal decomposition of ammonium perchlorate (AP) by differential scanning calorimeter (DSC). The results indicated that all products showed excellent catalytic activity for thermal decomposition of AP and the Co3O4nanorods with larger BET surface area and pore volume had the highest catalytic activity.


MRS Advances ◽  
2018 ◽  
Vol 3 (61) ◽  
pp. 3543-3549
Author(s):  
Pablo González ◽  
Andrea C. De Los Santos ◽  
Jorge R. Castiglioni ◽  
María A. De León

ABSTRACTA raw clay from Uruguay was modified with aluminium to obtain an aluminium pillared clay (Al-PILC). The solids were characterized by scanning electron microscopy, X-ray diffraction and nitrogen adsorption-desorption isotherms. The Al-PILC retained the typical laminar structure of montmorillonite. The specific surface area and the microporous volume of the Al-PILC, 235 m2 g-1 and 0.096 cm3 g-1, respectively, were much higher than those of the clay. The phosphate adsorption capacity of the Al-PILC was higher than those of the clay. The phosphate adsorption kinetic followed the pseudo-first-order model for both, the clay and the Al-PILC, and the phosphate adsorption isotherm for the Al-PILC fit the Freundlich model.


1991 ◽  
Vol 69 (10) ◽  
pp. 1511-1515 ◽  
Author(s):  
Awad I. Ahmed ◽  
S. E. Samra ◽  
S. A. El-Hakam

CuO–Al2O3 catalysts containing various amounts of copper oxide have been prepared by precipitation. The phase changes were studied by X-ray diffraction. The results obtained revealed that the thermal treatment of solid CuO–Al2O3 at 700 °C produced only crystalline CuO. Heating to 900 °C led to the formation of copper alumina spinel together with unreacted CuO and γ-Al2O3. The spinel content was found to increase with increasing copper content. Nitrogen adsorption–desorption isotherms on the calcined samples have been measured. Surface areas have been calculated and the pore structure analysed. The textural properties of the system were found to depend on both the copper content and the calcination temperature. Key words: CuO, Al2O3 catalysts, structure, surface area, pore structure.


Materials ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 1771 ◽  
Author(s):  
Stefan Neatu ◽  
Mihaela M. Trandafir ◽  
Adelina Stănoiu ◽  
Ovidiu G. Florea ◽  
Cristian E. Simion ◽  
...  

This study presents the synthesis and characterization of lanthanum-modified alumina supported cerium–manganese mixed oxides, which were prepared by three different methods (coprecipitation, impregnation and citrate-based sol-gel method) followed by calcination at 500 °C. The physicochemical properties of the synthesized materials were investigated by various characterization techniques, namely: nitrogen adsorption-desorption isotherms, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and H2–temperature programmed reduction (TPR). This experimental study demonstrated that the role of the catalytic surface is much more important than the bulk one. Indeed, the incipient impregnation of CeO2–MnOx catalyst, supported on an optimized amount of 4 wt.% La2O3–Al2O3, provided the best results of the catalytic combustion of methane on our catalytic micro-convertors. This is mainly due to: (i) the highest pore size dimensions according to the Brunauer-Emmett-Teller (BET) investigations, (ii) the highest amount of Mn4+ or/and Ce4+ on the surface as revealed by XPS, (iii) the presence of a mixed phase (Ce2MnO6) as shown by X-ray diffraction; and (iv) a higher reducibility of Mn4+ or/and Ce4+ species as displayed by H2–TPR and therefore more reactive oxygen species.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Olga V. Alekseeva ◽  
Anna N. Rodionova ◽  
Nadezhda A. Bagrovskaya ◽  
Alexander V. Agafonov ◽  
Andrew V. Noskov

Organobentonite powder was synthesized and characterized using laser diffraction, X-ray diffraction, low-temperature nitrogen adsorption-desorption technique, and dynamic light scattering. Obtained powder was found as material with mesopores. The organobentonite particles were larger than pure bentonite one. Hydroxyethyl cellulose (HEC) was filled with organobentonite particles by mechanical dispersion, and produced composite films were researched by the number of methods. New data relating to structure, tensile properties, and antimicrobial activity of HEC/organobentonite composites were obtained. Using results of X-ray diffraction, the reflections assigned to crystal filler in polymer material were proved. Concentration effect of the filling agent on tensile properties of composite film was revealed. Data of infrared (IR) spectrometry indicated a decrease in the density of hydrogen-bond net in HEC/organobentonite composite as compared with pristine HEC. Using microbiological tests, it was found that the HEC/organobentonite films exhibited bacteriostatic action against S. aureus and fungistatic action against molds.


2016 ◽  
Vol 864 ◽  
pp. 117-122 ◽  
Author(s):  
Hesni Shabrany ◽  
Hendry Tju ◽  
Ardiansyah Taufik ◽  
Rosari Saleh

This paper discusses the catalytic activity of ZnO/CuO/nanographene platelets composites under visible light and ultrasound irradiation separately. The ZnO/CuO/nanographene platelets composites were synthesized using a sol-gel method. X-ray diffraction and nitrogen adsorption spectroscopy were employed to investigate the structural and surface area of the catalyst. The catalytic activity results showed that the presence of nanographene platelets in ZnO/CuO nanocomposites improved its efficiency in degrading methylene blue. A scavenger method was also used to understand the role of charged carriers and the active radical involved in the catalytic activity.


2017 ◽  
Vol 373 ◽  
pp. 299-302
Author(s):  
Bo Zhou ◽  
Chong Yang Li ◽  
Ning Qi ◽  
Zhi Quan Chen

Porous ZnO were synthesized with soft template method using zinc acetate Zn (CH3COO)2·2H2O as precursor and block copolymer F127 as the surfactant. Nitrogen adsorption-desorption measurements indicate that the ZnO sample contains large pores with mean diameter of about 30 nm. However, both small-angle X-ray diffraction and transmission electron microscope measurements indicate that the pore ordering is missing. Positron lifetime measurements reveal two long lifetime components in the porous ZnO. The longest lifetime τ4 (75 ns) corresponds to ortho-positronium (o-Ps) annihilation in large pores. The pore size estimated from τ4 is about 10.6 nm. This is much smaller than that estimated from Nitrogen adsorption-desorption measurements. In addition, the intensity I4 is only about 2.2%. This is probably due to the chemical quenching and/or inhibition of positronium formation induced by ZnO, which reduces o-Ps lifetime and intensity, and leads to under estimation of the pore size.


2013 ◽  
Vol 779-780 ◽  
pp. 201-204
Author(s):  
Miao Li ◽  
Hong Wang ◽  
Xian Qing Li ◽  
Jin Rong Liu

Ordered hexagonally mesoporous molecular sieve Al-MCM-41 with Si/Al (atom) ratio=9 was prepared by hydrothermal synthesis using raw kaolin. X-ray diffraction (XRD), Nitrogen adsorption desorption, Transmission Electron Microscope (TEM) and Energy Dispersive X-ray Detector (EDX) were employed to characterise raw kaolin, calcined kaolin, as-synthesized and calcined Al-MCM-41. The results indicated that characteristic reflections of raw kaolin disappeared after calcination, both of as-synthesized and calcined Al-MCM-41 exhibited well ordered hexagonally mesoporous molecular sieve structure.


Sign in / Sign up

Export Citation Format

Share Document