scholarly journals Extending the Hierarchy of Heterogeneous Catalysis to Substituted Derivatives of Benzimidazole Synthesis: Transition Metals Decorated CNTs

Catalysts ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1000
Author(s):  
Iqbal ◽  
Sadiq ◽  
Sadiq ◽  
Ullah ◽  
Fazal ◽  
...  

A simple and practical procedure has been adopted for one pot synthesis of benzimidazole derivatives under mild reaction conditions, starting from cinnamyl alcohol (COH) with bimetallic nanoparticles (BNPs) and supported bimetallic nanoparticles of Cu, Ti, Zn, Mn, Ag, and Co. All the catalysts were characterized by Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDX), X-Ray Diffractometry (XRD), Brunauer Emmett-Teller (BET) surface area, and pore size analyzer. The products were identified/quantified with 1HNMR, FT-IR, and MS. 98% yield of substituted derivatives of benzimidazole was obtained with Cu–Ti supported on FMWCNTs in ethanol with excellent selectivity. Quantum chemical calculations of molecular reactivity of substituted cinnamaldehyde (CHO) and ortho phenylenediamine (OPD) have good consistency with experimental results. The returns of this work were the use of readily available catalysts, high yield, short reaction time, and simplicity of the process.

2020 ◽  
Vol 17 ◽  
Author(s):  
Mohammad Nikpassand ◽  
Zahra Pourkarim

Introduction: NiFe2O4@SiO2nPr@glucose catalyzed synthesis of novel 5-pyrazolin-1,2,4-triazazolidine-3- ones (thiones). Materials and Methods: Amino glucose‐ functionalized silica‐ coated NiFe2O4 nanoparticles (NiFe2O4@SiO2 nPr@glucose amine or NiFe2O4@SiP@GA) were synthesized and characterized by X-ray powder diffraction (XRD), X-ray spectroscopy (EDX), transmission electron microscope (TEM), field emission scanning electron microscope (FE-SEM), vibrating sample magnetometry (VSM) and fourier transform infrared spectroscopy (FT-IR). Results and Discussion: NiFe2O4@SiP@GA supply an eco-friendly procedure for the synthesis of some novel 5- pyrazolin-1,2,4-triazazolidine-3-ones or thiones through one-pot reaction of thiosemicarbazide (hydrazinecarbothioamide) and synthetized pyrazole carbaldehydes. These compounds were obtained in high yields in short reaction times. The catalyst could be easily recovered and reused for six cycles with almost consistent activity. The structures of the synthesized 5-pyrazolin-1,2,4-triazazolidine-3-ones or thiones were confirmed by 1H NMR, 13C NMR and FTIR spectral data and elemental analyses. Conclusion: In conclusion, we have investigated NiFe2O4@SiO2nPr@amino glucose as a new, eco-friendly, inexpensive, mild and reusable catalyst for the synthesis of 5-pyrazolin-1,2,4-triazazolidine-3-ones or thiones. High yield, a simple work‐ up procedure, adherence to the basics of green chemistry, environmental friendly and based on natural ingredients, ease of separation and recyclability of the magnetic catalyst and waste reduction are some advantages of this method.


2021 ◽  
Vol 11 (3) ◽  
pp. 215
Author(s):  
Achraf El Hallaoui ◽  
Tourya Ghailane ◽  
Soukaina Chehab ◽  
Youssef Merroun ◽  
Rachida Ghailane ◽  
...  

<p>This work aims to prepare a new bimetallic phosphate catalyst using a new simple and effective method. This new catalyst was ready for the first time by a modification of Triple Super Phosphate (TSP) fertilizer with silver sulfate (AgSO<sub>4</sub>), followed by the impregnation of the aluminum atoms using aluminum nitrate (Al(NO<sub>3</sub>)<sub>3</sub>). The use of Al/Ag<sub>3</sub>PO<sub>4</sub>, for the first time as a heterogeneous catalyst in organic chemistry, offers a new, efficient, and green pathway for synthesizing 1,2-dihydro-l-phenyl-3H-naphth[1,2-e]-[1,3]oxazin-3-one derivatives by one-pot three-component cyclocondensation of b-naphthol, aryl aldehyde, and urea. The structure and the morphology of the prepared catalyst were characterized by spectroscopic methods such as X-Ray Diffraction (XRD), Fourier Transform Infrared spectroscopy (FT-IR), and dispersive X-ray spectrometry coupled with a scanning electron microscope (EDX-SEM). In addition, the optimization of the reaction parameters was carried out considering the effect of catalyst amount, the temperature, and the solvent. The procedure described herein allowed a comfortable preparation of oxazine derivatives with excellent yields, short reaction times, and in the absence of organic solvent.</p>


2020 ◽  
Vol 32 (10) ◽  
pp. 2489-2494
Author(s):  
S.S. Sagar ◽  
R.P. Chavan

The present study deals with hydrothermal synthesis of SiO2 composite MgMnO3 catalyst. The obtained polycrystalline product was analyzed by using physical investigative techniques including XRD, SEM, EDAX, TEM, SAED and BET surface area. The product corresponded to average particle size of 100 nm by TEM images. The BET surface area was found 234.38 cm2/g for SiO2 composite MgMnO3 catalyst which indicates a good catalytic property. The synthesized catalyst was applied for the synthesis of 1H-pyrazolo[1,2-b]-phthalazine-5,10-dione in presence of ethanol as a solvent at 80 ºC. The current procedure and catalyst offers the gains of clean reaction, short reaction time, high yield, easy purification and financial availability of the catalyst.


BMC Chemistry ◽  
2019 ◽  
Vol 13 (1) ◽  
Author(s):  
Hossein Shahbazi-Alavi ◽  
Sheida Khojasteh-Khosro ◽  
Javad Safaei-Ghomi ◽  
Maryam Tavazo

Abstract Crosslinked sulfonated polyacrylamide (Cross-PAA-SO3H) attached to nano-Fe3O4 as a superior catalyst has been used for the synthesis of 3-alkyl-4-phenyl-1,3-thiazole-2(3H)-thione derivatives through a three-component reactions of phenacyl bromide or 4-methoxyphenacyl bromide, carbon disulfide and primary amine under reflux condition in ethanol. A proper, atom-economical, straightforward one-pot multicomponent synthetic route for the synthesis of 1,3-thiazoles in good yields has been devised using crosslinked sulfonated polyacrylamide (Cross-PAA-SO3H) tethered to nano-Fe3O4. The catalyst has been characterized by Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM), dynamic light scattering (DLS), X-ray powder diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS), thermogravimetric analysis (TGA) and vibrating-sample magnetometer (VSM).


Molecules ◽  
2020 ◽  
Vol 25 (23) ◽  
pp. 5581
Author(s):  
Raju Suresh Kumar ◽  
Dhaifallah M. Al-thamili ◽  
Abdulrahman I. Almansour ◽  
Natarajan Arumugam ◽  
Faruq Mohammad

With an aim to develop more effective and affordable anticancer agents possessing a unique mechanism of action, we designed and synthesized derivatives of spirooxindole-pyrrolidine heterocyclic hybrids in good yields through a one-pot three-component (3+2) cycloaddition strategy. The synthesized compounds were characterized thoroughly for the physicochemical properties by making use of FT-IR, NMR spectroscopy, and mass spectrometry. Further, these compounds have been evaluated for the influence of anticancer activity against HepG2 cells up to 200 µg/mL concentration. The highly active molecular scaffold was tested for the in-depth mechanistic studies, and it was found that the major pathway of cell death is apoptosis which occurs through the induction of reactive oxygen species followed by the involvement of caspases.


2011 ◽  
Vol 9 (4) ◽  
pp. 635-647 ◽  
Author(s):  
Chetan Sangani ◽  
Divyesh Mungra ◽  
Manish Patel ◽  
Ranjan Patel

AbstractA new series of twenty four derivatives of pyrano[3,2-c]chromene IVa-x bearing 1H-pyrazole were synthesized by a one pot, base-catalyzed cyclocondensation reaction of 1H-pyrazole-4-carbaldehyde Ia-l, malononitrile II and 4-hydroxycoumarin IIIa-b. All the synthesized compounds were characterized by elemental analysis, FT-IR, 1H NMR and 13C NMR spectral data. All the synthesized compounds were screened against six bacterial pathogens, namely B. subtilis, C. tetani, S. pneumoniae, S. typhi, V. cholerae, E. coli and for antifungal activity against two fungal pathogens, A. fumigatus and C. albicans using the broth microdilution MIC method. Some of the compounds were found to be equipotent or more potent than commercial drugs against most of employed strains, as evident from the screening data.


2016 ◽  
Vol 1141 ◽  
pp. 190-195
Author(s):  
Hitesh Saravaia ◽  
Hariom Gupta ◽  
Vaibhav Kulshreshtha

Barium Titanate (BaTiO3) nanostructures are synthesized by the molten salt-hydroxide reaction. The crystalline phase and chemical structure of the synthesized material are analyzed using powder x-ray diffraction (XRD) and FT-IR techniques, revealing the tetragonal BaTiO3 crystalline structure. Morphology and thermal stability of the material are characterized using TEM and TG-DTG analysis. BET surface area analysis shows significant active surface available for adsorption and its surface area value is found to be 14.8427 m2 g-1. The maximum adsorption of strontium metal is found to be 56.3 for the 1.2 g L-1 BaTiO3 adsorbent dose which reveals a remarkable separation property of the BaTiO3.


2009 ◽  
Vol 64 (8) ◽  
pp. 945-951 ◽  
Author(s):  
Kamal M. El-Shaieb ◽  
Peter G. Jones

A series of 2-(2-aminophenyl)-4-arylquinazoline derivatives (5a - j), with various 4-substituents, have been synthesized by one-pot cyclization in 66 - 79% yield by heating 2-aminoarylbenzimidamides 3a - j with isatoic anhydride (4). The high yield and simplified workup procedure, in addition to the neutral reaction conditions, are the main advantages of our approach. The structure of the product 5e was further confirmed by single-crystal X-ray structure analysis


2019 ◽  
Vol 37 (4) ◽  
pp. 645-651
Author(s):  
Yasaman Khaksarfard ◽  
Hakimeh Ziyadi ◽  
Akbar Heydari

AbstractBecause of special characteristics of vanadate compound, such as its sustainability, magneticity, high selectivity in reactions and catalytic character, this study aimed to preparation and analyzing novel ceramic iron vanadate (FeVO4) nanofibers. The ceramic nanofibers of iron vanadate were made by the combination of sol-gel and electrospinning methods. First, polyvinyl alcohol (PVA), as a matrix polymer, was mixed separately with ammonium metavanadate (NH4VO3) and iron (III) nitrate (Fe(NO3)3). As a result, the spinnable polymeric gel was obtained from the controlled mixture of these two precursors of ceramic material. Electrospinning of PVA/iron (III) nitrate/ammonium vanadate solution was done using an Electroris setup that enabled preparation of polymeric template nanofiber. Finally, iron vanadate nanofiber was obtained by calcination of polymer nanofiber at controlled temperature. The products were characterized with scanning electron microscope (SEM), energy dispersive X-ray spectroscope (EDX), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), vibrating sample magnetometer (VSM) and Brunauer-Emmett-Teller (BET) surface area analysis.


Author(s):  
Rameshwar R. Magar ◽  
Ganesh T. Pawar ◽  
Sachin P. Gadekar ◽  
Machhindra Karbhari Lande

The Ce-ZSM-11 zeolite has been used as an efficient catalyst for the one pot synthesis of 1,8-dioxo-octahydroxanthene derivatives from aromatic aldehyde and 5,5-dimethyl-cyclohexane-1,3-dione under reflux condition. The catalyst was characterized by Powder X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS), Fourier Transform Infrared Spectroscopy (FTIR), Brunauer-Emmer-Teller (BET) surface area analysis, and Temperature Programmed Desorption (TPD) techniques. This method provides several advantageous such as use of inexpensive catalyst, simple work-up procedure, high yield of desired product and reusability of catalyst. Copyright © 2018 BCREC Group. All rights reservedReceived: 5th January 2018; Revised: 25th May 2018; Accepted: 27th May 2018How to Cite: Magar, R.R., Pawar, G.T., Gadekar, S.P., Lande, M.K. (2018). An Efficient Synthesis of  1,8-Dioxo-Octahydroxanthenes Derivatives Using Heterogeneous Ce-ZSM-11 Zeolite Catalyst. Bulletin of Chemical Reaction Engineering & Catalysis, 13 (3): 436-446 (doi:10.9767/bcrec.13.3.2062.436-446)Permalink/DOI: https://doi.org/10.9767/bcrec.13.3.2062.436-446 


Sign in / Sign up

Export Citation Format

Share Document