scholarly journals The Role of DJ-1 in Cellular Metabolism and Pathophysiological Implications for Parkinson’s Disease

Cells ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 347
Author(s):  
Pauline Mencke ◽  
Ibrahim Boussaad ◽  
Chiara D. Romano ◽  
Toshimori Kitami ◽  
Carole L. Linster ◽  
...  

DJ-1 is a multifunctional protein associated with pathomechanisms implicated in different chronic diseases including neurodegeneration, cancer and diabetes. Several of the physiological functions of DJ-1 are not yet fully understood; however, in the last years, there has been increasing evidence for a potential role of DJ-1 in the regulation of cellular metabolism. Here, we summarize the current knowledge on specific functions of DJ-1 relevant to cellular metabolism and their role in modulating metabolic pathways. Further, we illustrate pathophysiological implications of the metabolic effects of DJ-1 in the context of neurodegeneration in Parkinson´s disease.

2020 ◽  
Vol 25 (42) ◽  
pp. 4510-4522 ◽  
Author(s):  
Biancamaria Longoni ◽  
Irene Fasciani ◽  
Shivakumar Kolachalam ◽  
Ilaria Pietrantoni ◽  
Francesco Marampon ◽  
...  

: Exosomes are extracellular vesicles produced by eukaryotic cells that are also found in most biological fluids and tissues. While they were initially thought to act as compartments for removal of cellular debris, they are now recognized as important tools for cell-to-cell communication and for the transfer of pathogens between the cells. They have attracted particular interest in neurodegenerative diseases for their potential role in transferring prion-like proteins between neurons, and in Parkinson’s disease (PD), they have been shown to spread oligomers of α-synuclein in the brain accelerating the progression of this pathology. A potential neuroprotective role of exosomes has also been equally proposed in PD as they could limit the toxicity of α-synuclein by clearing them out of the cells. Exosomes have also attracted considerable attention for use as drug vehicles. Being nonimmunogenic in nature, they provide an unprecedented opportunity to enhance the delivery of incorporated drugs to target cells. In this review, we discuss current knowledge about the potential neurotoxic and neuroprotective role of exosomes and their potential application as drug delivery systems in PD.


Immuno ◽  
2021 ◽  
Vol 1 (2) ◽  
pp. 78-90
Author(s):  
Johannes Burtscher ◽  
Grégoire P. Millet

Like in other neurodegenerative diseases, protein aggregation, mitochondrial dysfunction, oxidative stress and neuroinflammation are hallmarks of Parkinson’s disease (PD). Differentiating characteristics of PD include the central role of α-synuclein in the aggregation pathology, a distinct vulnerability of the striato-nigral system with the related motor symptoms, as well as specific mitochondrial deficits. Which molecular alterations cause neurodegeneration and drive PD pathogenesis is poorly understood. Here, we summarize evidence of the involvement of three interdependent factors in PD and suggest that their interplay is likely a trigger and/or aggravator of PD-related neurodegeneration: hypoxia, acidification and inflammation. We aim to integrate the existing knowledge on the well-established role of inflammation and immunity, the emerging interest in the contribution of hypoxic insults and the rather neglected effects of brain acidification in PD pathogenesis. Their tight association as an important aspect of the disease merits detailed investigation. Consequences of related injuries are discussed in the context of aging and the interaction of different brain cell types, in particular with regard to potential consequences on the vulnerability of dopaminergic neurons in the substantia nigra. A special focus is put on the identification of current knowledge gaps and we emphasize the importance of related insights from other research fields, such as cancer research and immunometabolism, for neurodegeneration research. The highlighted interplay of hypoxia, acidification and inflammation is likely also of relevance for other neurodegenerative diseases, despite disease-specific biochemical and metabolic alterations.


Biomedicines ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 754
Author(s):  
Giulia Gaggi ◽  
Andrea Di Credico ◽  
Pascal Izzicupo ◽  
Giovanni Iannetti ◽  
Angela Di Baldassarre ◽  
...  

Parkinson’s disease (PD) is one of the most common neurodegenerative disease characterized by a specific and progressive loss of dopaminergic (DA) neurons and dopamine, causing motor dysfunctions and impaired movements. Unfortunately, available therapies can partially treat the motor symptoms, but they have no effect on non-motor features. In addition, the therapeutic effect reduces gradually, and the prolonged use of drugs leads to a significative increase in the number of adverse events. For these reasons, an alternative approach that allows the replacement or the improved survival of DA neurons is very appealing for the treatment of PD patients and recently the first human clinical trials for DA neurons replacement have been set up. Here, we review the role of chemical and biological molecules that are involved in the development, survival and differentiation of DA neurons. In particular, we review the chemical small molecules used to differentiate different type of stem cells into DA neurons with high efficiency; the role of microRNAs and long non-coding RNAs both in DA neurons development/survival as far as in the pathogenesis of PD; and, finally, we dissect the potential role of exosomes carrying biological molecules as treatment of PD.


RSC Advances ◽  
2015 ◽  
Vol 5 (95) ◽  
pp. 77706-77715 ◽  
Author(s):  
Supinder Kaur ◽  
Aamir Nazir

Studies employing transgenicC. elegansmodel show that trehalose, a protein stabilizer, alleviates manifestations associated with Parkinson's diseaseviaits inherent activity and through induction of autophagic machinery.


2021 ◽  
Author(s):  
Moataz Dowaidar

There is evidence that the VPS35 protein impacts degradation of dopaminergic (DA) neuron lifespan and that the D620N mutation is associated with a kind of Parkinson's disease (PD) mimicking idiopathic PD. The incidence of this mutation and the likely pathogenic effects of additional VPS35 variants is unclear. Other unusual VPS35 mutations may put people at risk for Parkinson's disease, but the level of risk has yet to be determined.Due to the functional and genetic links between VPS35 and other PD-associated genes, rare VPS35 variants may be a key extra component in developing the PD phenotype in people with other mutations with inadequate penetration. Genetic association analysis could remedy this issue in the near future.VPS35-associated PD neuropathology is another significant aspect. Since just one D620N mutant carrier has been studied at autopsy to date, limited information is available about the neuropathological spectrum of PD patients with VPS35 mutations. It is yet unknown if neuronal loss in VPS35-related PD occurs just in SNc or affects other brain areas such as locus coeruleus, cortex, hippocampus and other structures. Neuropathology of VPS35-D620N mice models demonstrated severe tau pathology and axonal degradation, but no evidence of SYN inclusions. It's uncertain if PD individuals with VPS35 mutations have the same features.More study on the role of VPS35 in enhancing DA neuron survival is also needed to better understand the metabolic pathways damaged by VPS35 mutations and identify new therapy goals. The D620N VPS35 KI model, paired with the parkinQ311X mouse model, is one of the first monogenic PD models to recapitulate the fundamental PD feature: DA neuronal breakdown in SNc. These mouse models can be used to identify and assess drug targets. Because the neurodegenerative molecular pathways in many types of Parkinson's disease are so similar, drugs that confer neuroprotection in VPS35 models could be studied in other, more common types of Parkinson's disease.


2009 ◽  
Vol 2009 ◽  
pp. 1-9 ◽  
Author(s):  
Anouk Waeytens ◽  
Martine De Vos ◽  
Debby Laukens

Inflammatory bowel diseases (IBDs) are a group of chronic, relapsing, immune-mediated disorders of the intestine, including Crohn's disease and ulcerative colitis. Recent studies underscore the importance of the damaged epithelial barrier and the dysregulated innate immune system in their pathogenesis. Metallothioneins (MTs) are a family of small proteins with a high and conserved cysteine content that are rapidly upregulated in response to an inflammatory stimulus. Herein, we review the current knowledge regarding the expression and potential role of MTs in IBD. MTs exert a central position in zinc homeostasis, modulate the activation of the transcription factor nuclear factor (NF)-B, and serve as antioxidants. In addition, MTs could be involved in IBD through their antiapoptotic effects or through specific immunomodulating extracellular effects. Reports on MT expression in IBD are contradictory but clearly demonstrate a deviant MT expression supporting the idea that these aberrations in IBD require further clarification.


2016 ◽  
Vol 230 (1) ◽  
pp. R1-R11 ◽  
Author(s):  
Anthony H Tsang ◽  
Mariana Astiz ◽  
Maureen Friedrichs ◽  
Henrik Oster

Endogenous circadian clocks regulate 24-h rhythms of behavior and physiology to align with external time. The endocrine system serves as a major clock output to regulate various biological processes. Recent findings suggest that some of the rhythmic hormones can also provide feedback to the circadian system at various levels, thus contributing to maintaining the robustness of endogenous rhythmicity. This delicate balance of clock–hormone interaction is vulnerable to modern lifestyle factors such as shiftwork or high-calorie diets, altering physiological set points. In this review, we summarize the current knowledge on the communication between the circadian timing and endocrine systems, with a focus on adrenal glucocorticoids and metabolic peptide hormones. We explore the potential role of hormones as systemic feedback signals to adjust clock function and their relevance for the maintenance of physiological and metabolic circadian homeostasis.


2002 ◽  
Vol 52 (6) ◽  
pp. 793-801 ◽  
Author(s):  
Honglei Chen ◽  
Shumin M. Zhang ◽  
Miguel A. Hernán ◽  
Walter C. Willett ◽  
Alberto Ascherio

Sign in / Sign up

Export Citation Format

Share Document