scholarly journals Immune Cells Profiling in ANCA-Associated Vasculitis Patients—Relation to Disease Activity

Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1773
Author(s):  
Marcelina Żabińska ◽  
Katarzyna Kościelska-Kasprzak ◽  
Joanna Krajewska ◽  
Dorota Bartoszek ◽  
Hanna Augustyniak-Bartosik ◽  
...  

Antineutrophil cytoplasmic antibody (ANCA)-associated vasculitides (AAV) are a group of necrotizing multiorgan autoimmune vasculitides that predominantly affect small blood vessels and are associated with the presence of ANCAs. The aim was to assess regulatory and effector cell populations accompanied by the suPAR biomarker level and link the so-defined immune state to the AAV disease activity. The research involved a multicomponent description of an immune state encompassing a range of B and T cell subsets such as transitional/regulatory B cells (CD19+CD24++CD38++), naïve B cells (CD19+CD24INTCD38INT), Th17 cells, T regulatory cells (CD4+CD25+FoxP3+) and cytotoxic CD4+CD28− cells by flow cytometry. The suPAR plasma level was measured by ELISA. The results indicate that AAV is associated with an increased suPAR plasma level and immune fingerprint characterized by an expansion of Th17 cells and T cells lacking the costimulatory molecule CD28, accompanied by a decrease of regulatory populations (Tregs and transitional B cells) and NK cells. Decreased numbers of regulatory T cells and transitional B cells were shown to be linked to activation of the AAV disease while the increased suPAR plasma level—to AAV-related deterioration of kidney function. The observed immune fingerprint might be a reflection of peripheral tolerance failure responsible for development and progression of ANCA-associated vasculitides.

1998 ◽  
Vol 188 (4) ◽  
pp. 651-659 ◽  
Author(s):  
Jeffrey C. Rathmell ◽  
Sylvie Fournier ◽  
Bennett C. Weintraub ◽  
James P. Allison ◽  
Christopher C. Goodnow

Peripheral tolerance mechanisms normally prevent delivery of T cell help to anergic self-reactive B cells that accumulate in the T zones of spleen and lymph nodes. Chronic exposure to self-antigens desensitizes B cell antigen receptor (BCR) signaling on anergic B cells so that they are not stimulated into clonal expansion by CD4+ T cells but instead are eliminated by Fas (CD95)-induced apoptosis. Because a range of BCR-induced signals and responses are repressed in anergic B cells, it is not known which of these are critical to regulate for Fas-mediated peripheral tolerance. Display of the costimulatory molecule, B7.2 (CD86), represents a potentially important early response to acute BCR engagement that is poorly induced by antigen on anergic B cells. We show here that restoring B7.2 expression on tolerant B cells using a constitutively expressed B7.2 transgene is sufficient to prevent Fas-mediated deletion and to trigger extensive T cell–dependent clonal expansion and autoantibody secretion in the presence of specific T cells. Dysregulated expression of B7.2 on tolerant B cells caused a more extreme reversal of peripheral tolerance than that caused by defects in Fas or Fas ligand, and resulted in T cell–dependent clonal expansion and antibody secretion comparable in magnitude to that made by foreign antigen-specific B cells. These findings demonstrate that repression of B7.2 is critical to eliminate autoreactive B cells by Fas in B cell–T cell interactions. The possible role of B7.2 dysregulation in systemic autoimmune diseases is discussed.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Wanlin Jin ◽  
Qi Yang ◽  
Yuyao Peng ◽  
Chengkai Yan ◽  
Yi Li ◽  
...  

AbstractMyasthenia gravis (MG) is a rare autoimmune disease. Although the impact of immune cell disorder in MG has been extensively studied, little is known about the transcriptomes of individual cells. Here, we assessed the transcriptional profiles of 39,243 cells by single-cell sequencing and identified 13 major cell clusters, along with 39 subgroups of cells derived from patients with new-onset myasthenia gravis and healthy controls. We found that B cells, CD4+ T cells, and monocytes exhibited more heterogeneity in MG patients. CD4+ T cells were expanded in MG patients. We reclustered B cells and CD4+ T cells, and predict their essential regulators. Further analyses demonstrated that B cells in MG exhibited higher transcriptional activity towards plasma cell differentiation, CD4+ T cell subsets were unbalanced, and inflammatory pathways of monocytes were highly activated. Notably, we discovered a disease-relevant subgroup, CD180− B cells. Increased CD180− B cells in MG are indicative of a high IgG composition and were associated with disease activity and the anti-AChR antibody. Together, our data further the understanding of the cellular heterogeneity involved in the pathogenesis of MG and provide large cell-type-specific markers for subsequent research.


Cryobiology ◽  
1986 ◽  
Vol 23 (3) ◽  
pp. 199-208 ◽  
Author(s):  
M. Venkataraman ◽  
M.P. Westerman
Keyword(s):  
T Cells ◽  
T Cell ◽  
B Cells ◽  

Author(s):  
Sudhir Gupta ◽  
Houfen Su ◽  
Sudhanshu Agrawal

<b><i>Introduction:</i></b> In the trials of corona virus vaccines, detailed analyses of subsets of lymphocytes were not carried out. We present perhaps the most comprehensive immunological analysis of 29 subsets of B and T cells in 2 healthy subjects receiving 2 doses of the Pfizer SARS-CoV-2 (COVID-19) vaccine. <b><i>Methods:</i></b> Analyses were performed prior to vaccination, 3 weeks following the 1st dose, and 4 weeks following the 2nd dose. Total, naïve (T<sub>N</sub>), and different memory and effector subsets (T<sub>CM</sub>, T<sub>EM</sub>, and T<sub>EMRA</sub>) of CD4+ and CD8+ T cells; SARS-CoV-2 spike protein-specific tetramer+, and cytotoxic CD8+ T; subsets of T follicular cells (T<sub>FH</sub>, T<sub>FH</sub>1, T<sub>FH</sub>2, T<sub>FH</sub>1/T<sub>FH</sub>17, and T<sub>FH</sub>17); B-cell subsets (mature B cells, naive B cells, transitional B cells, marginal zone B cells, class-switched memory B cells, germinal center B cells, and CD21<sup>low</sup> B cells), and plasmablasts; and regulatory lymphocytes (CD4+ Treg, CD8+ Treg, Breg, and T<sub>FR</sub> cells) were evaluated with specific monoclonal antibodies by flow cytometry. <b><i>Results:</i></b> A lack of COVID-19 IgG antibodies after the 1st dose in one of 2 subjects was associated with increased regulatory lymphocytes and decreased plasmablasts. Seroconversion after the 2nd dose in this subject was associated with decreased T<sub>FR</sub> cells and increased plasmablasts. In both subjects, CD4 T<sub>EM</sub> and CD8 T<sub>CM</sub> were markedly increased following the 2nd dose. T<sub>FH</sub>1 and regulatory lymphocytes were increased (except Breg) following the 1st dose. A striking increase in SARS-CoV-2-specific CD8+ T cells was observed following the 2nd dose. <b><i>Conclusion:</i></b> Our data support the need for 2nd dose of vaccine to induce strong SARS-CoV-2 CD8 T-cell specific response and generation of memory subsets of CD4+ and CD8+ T cells. Regulatory lymphocytes appear to play a role in the magnitude of response.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 17-18
Author(s):  
Jose C Villasboas ◽  
Patrizia Mondello ◽  
Angelo Fama ◽  
Melissa C. Larson ◽  
Andrew L. Feldman ◽  
...  

Background The importance of the immune system in modulating the trajectory of lymphoma outcomes has been increasingly recognized. We recently showed that CD4+ cells are associated with clinical outcomes in a prospective cohort of almost 500 patients with follicular lymphoma (FL). Specifically, we showed that the absence of CD4+ cells inside follicles was independently associated with increased risk of early clinical failure. These data suggest that the composition, as well as the spatial distribution of immune cells within the tumor microenvironment (TME), play an important role in FL. To further define the architecture of the TME in FL we analyzed a FL tumor section using the Co-Detection by Indexing (CODEX) multiplex immunofluorescence system. Methods An 8-micron section from a formalin-fixed paraffin-embedded block containing a lymph node specimen from a patient with FL was stained with a cocktail of 15 CODEX antibodies. Five regions of interest (ROIs) were imaged using a 20X air objective. Images underwent single-cell segmentation using a Unet neural network, trained on manually segmented cells (Fig 1A). Cell type assignment was done after scaling marker expression and clustering using Phenograph. Each ROI was manually masked to indicate areas inside follicles (IF) and outside follicles (OF). Relative and absolute frequencies of cell types were calculated for each region. Cellular contacts were measured as number and types of cell-cell contacts within two cellular diameters. To identify proximity communities, we clustered cells based on number and type of neighboring masks using Phenograph. The number of cell types and cellular communities were calculated inside and outside follicles after adjustment for total IF and OF areas. The significance of cell contact was measured using a random permutation test. Results We identified 13 unique cell subsets (11 immune, 1 endothelial, 1 unclassified) in the TME of our FL section (Fig. 1A). The unique phenotype of each subset was confirmed using a dimensionality reduction tool (t-SNE). The global composition of the TME varied minimally across ROIs and consisted primarily of B cells, T cells, and macrophages subsets - in decreasing order of frequency. Higher spatial heterogeneity across ROIs was observed in the frequency of T cell subsets in comparison to B cells subsets. Inspecting the spatial distribution of T cell subsets (Fig. 1B), we observed that cytotoxic T cells were primarily located in OF areas, whereas CD4+ T cells were found in both IF and OF areas. Notably, the majority of CD4+ T cells inside the follicles expressed CD45RO (memory phenotype), while most of the CD4+ T cells outside the follicles did not. Statistical analysis of the spatial distribution of CD4+ memory T cell subsets confirmed a significant increase in their frequency inside follicles compared to outside (20.4% vs 11.2%, p &lt; 0.001; Fig. 1D). Cell-cell contact analysis (Fig 1C) showed increased homotypic contact for all cell types. We also found a higher frequency of heterotypic contact between Ki-67+CD4+ memory T cells and Ki-67+ B cells. Pairwise analysis showed these findings were statistically significant, indicating these cells are organized in niches rather than randomly distributed across image. Analysis of cellular communities (Fig. 1C) identified 13 niches, named according to the most frequent type of cell-cell contact. All CD4+ memory T cell subsets were found to belong to the same neighborhood (CD4 Memory community). Analysis of the spatial distribution of this community confirmed that these niches were more frequently located inside follicles rather than outside (26.3±4% vs 0.004%, p &lt; 0.001, Fig. 1D). Conclusions Analysis of the TME using CODEX provides insights on the complex composition and unique architecture of this FL case. Cells were organized in a pattern characterized by (1) high degree of homotypic contact and (2) increased heterotypic interaction between activated B cells and activated CD4+ memory T cells. Spatial analysis of both individual cell subsets and cellular neighborhoods demonstrate a statistically significant increase in CD4+ memory T cells inside malignant follicles. This emerging knowledge about the specific immune-architecture of FL adds mechanistic details to our initial observation around the prognostic value of the TME in this disease. These data support future studies using modulation of the TME as a therapeutic target in FL. Figure 1 Disclosures Galkin: BostonGene: Current Employment, Patents & Royalties. Svekolkin:BostonGene: Current Employment, Current equity holder in private company, Patents & Royalties. Postovalova:BostonGene: Current Employment, Current equity holder in private company. Bagaev:BostonGene: Current Employment, Current equity holder in private company, Patents & Royalties. Ovcharov:BostonGene: Current Employment, Current equity holder in private company, Patents & Royalties. Varlamova:BostonGene: Current Employment, Current equity holder in private company, Patents & Royalties. Novak:Celgene/BMS: Research Funding. Witzig:AbbVie: Consultancy; MorphSys: Consultancy; Incyte: Consultancy; Acerta: Research Funding; Karyopharm Therapeutics: Research Funding; Immune Design: Research Funding; Spectrum: Consultancy; Celgene: Consultancy, Research Funding. Nowakowski:Nanostrings: Research Funding; Seattle Genetics: Consultancy; Curis: Consultancy; Ryvu: Consultancy, Membership on an entity's Board of Directors or advisory committees, Other; Kymera: Consultancy; Denovo: Consultancy; Kite: Consultancy; Celgene/BMS: Consultancy, Research Funding; Roche: Consultancy, Research Funding; MorphoSys: Consultancy, Research Funding. Cerhan:BMS/Celgene: Research Funding; NanoString: Research Funding. Ansell:Trillium: Research Funding; Takeda: Research Funding; Regeneron: Research Funding; Affimed: Research Funding; Seattle Genetics: Research Funding; Bristol Myers Squibb: Research Funding; AI Therapeutics: Research Funding; ADC Therapeutics: Research Funding.


Rheumatology ◽  
2020 ◽  
Vol 59 (11) ◽  
pp. 3435-3442 ◽  
Author(s):  
Arman Aue ◽  
Franziska Szelinski ◽  
Sarah Y Weißenberg ◽  
Annika Wiedemann ◽  
Thomas Rose ◽  
...  

Abstract Objectives SLE is characterized by two pathogenic key signatures, type I IFN and B-cell abnormalities. How these signatures are interrelated is not known. Type I-II IFN trigger activation of Janus kinase (JAK) – signal transducer and activator of transcription (STAT). JAK-STAT inhibition is an attractive therapeutic possibility for SLE. We assess STAT1 and STAT3 expression and phosphorylation at baseline and after IFN type I and II stimulation in B-cell subpopulations of SLE patients compared with other autoimmune diseases and healthy controls (HD) and related it to disease activity. Methods Expression of STAT1, pSTAT1, STAT3 and pSTAT3 in B and T cells of 21 HD, 10 rheumatoid arthritis (RA), seven primary Sjögren’s (pSS) and 22 SLE patients was analysed by flow cytometry. STAT1 and STAT3 expression and phosphorylation in PBMCs (peripheral blood mononuclear cells) of SLE patients and HD after IFNα and IFNγ incubation were further investigated. Results SLE patients showed substantially higher STAT1 but not pSTAT1 in B- and T-cell subsets. Increased STAT1 expression in B-cell subsets correlated significantly with SLEDAI and Siglec-1 on monocytes, a type I IFN marker. STAT1 activation in plasmablasts was IFNα dependent while monocytes exhibited dependence on IFNγ. Conclusion Enhanced expression of STAT1 by B-cell candidates as a key node of two immunopathogenic signatures (type I IFN and B-cells) related to important immunopathogenic pathways and lupus activity. We show that STAT1 is activated upon IFNα exposure in SLE plasmablasts. Thus, Jak inhibitors, targeting JAK-STAT pathways, hold a promise to block STAT1 expression and control plasmablast induction in SLE.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 1347-1347
Author(s):  
Zhi-Zhang Yang ◽  
Anne J. Novak ◽  
Thomas E. Witzig ◽  
Stephen M. Ansell

Abstract Numerous clinical therapies have attempted to modulate tumor cell immunity, but for the most part, have proven unsuccessful. The inability to produce or augment an effective immune response is due in part to regulatory T (Treg) cells, which inhibit CD4 and CD8 T cell function. Our group has recently shown that Treg cell numbers are elevated in NHL tumors and that NHL B cells induce the development of Treg cells thereby inhibiting anti-tumor responses. The ability of NHL B cells to direct the cellular composition of their microenvironment is critical to our understanding of tumor immunity and we therefore wanted to determine if NHL B cells also directed the expansion or reduction of other T cell populations. IL-17-secreting CD4+ T cells (TH17), a newly characterized CD4+ T helper cell lineage, promote inflammation and play an important role in autoimmune disease. IL-17 has been shown to inhibit tumor cell growth suggesting a potential role for TH17 cells in anti-tumor immunity. We therefore set out to determine if TH17 cells were present in NHL tumors and whether or not their numbers were regulated by NHL B cells. Using unsorted mononuclear cells from malignant lymph nodes, we were unable to detect IL-17 expression in resting CD4+ T cells or CD4+ T cells activated with PMA/Ionomycin stimulation (less than 1%). However, IL-17-secreting CD4+ T cells could be detected in significant numbers in inflammatory tonsil and normal PBMCs. Interestingly, depletion of CD19+ NHL B cells from mononuclear cells obtained from patient biopsies resulted in detection of a clear population of IL-17-secreting CD4+ T cells (5%). These results suggest that NHL B cells suppress TH17 cell differentiation. The frequency of IL-17-secreting CD4+ T cells could not be further enhanced by the addition of exogenous TGF-b and IL-6, a cytokine combination favoring for TH17 differentiation, suggesting a further impairment of TH17 cell differentiation in the tumor microenvironment. In contrast, Foxp3 expression could be detected in resting CD4+ T cells (30%) and could be induced in CD4+CD25−Foxp3− T cells activated with TCR stimulation (28%). Contrary to the inhibition of TGF-b-mediated TH17 differentiation, Foxp3 expression could be dramatically upregulated by TGF-b in intratumoral CD4+ T cells (35%). In addition, lymphoma B cells strongly enhanced Foxp3 expression in intratumoral CD4+CD25−Foxp3−. Furthermore, when added together, the frequency of Foxp3+ T cells and Foxp3-inducible cells reached up to 60% of CD4+ T cells in tumor microenvironment of B-cell NHL. These findings suggest that the balance of effector TH17 cells and inhibitory Treg cells is disrupted in B-cell NHL and significantly favors the development of inhibitory Treg cells. Our data indicate that lymphoma B cells are key factor in regulating differentiation of intratumoral CD4+ T cells toward inhibitory CD4+ T cells.


2021 ◽  
Vol 12 ◽  
Author(s):  
Nur Diyana Mohd Shukri ◽  
Aziz Farah Izati ◽  
Wan Syamimee Wan Ghazali ◽  
Che Maraina Che Hussin ◽  
Kah Keng Wong

The receptors for IL-35, IL-12Rβ2 and gp130, have been implicated in the inflammatory pathophysiology of autoimmune diseases. In this study, we set out to investigate the serum IL-35 levels and the surface levels of IL-12Rβ2 and gp130 in CD3+CD4+, CD3+CD4─ and CD3─CD4─ lymphocyte subpopulations in systemic lupus erythematosus (SLE) patients (n=50) versus healthy controls (n=50). The potential T cell subsets associated with gp130 transcript (i.e. IL6ST) expression in CD4+ T cells of SLE patients was also examined in publicly-available gene expression profiling (GEP) datasets. Here, we report that serum IL-35 levels were significantly higher in SLE patients than healthy controls (p=0.038) but it was not associated with SLEDAI-2K scores. The proportions of IL-12Rβ2+ and gp130+ cells in SLE patients did not differ significantly with those of healthy controls in all lymphocyte subpopulations investigated. Essentially, higher SLEDAI-2K scores were positively correlated with increased proportion of gp130+ cells, but not IL-12Rβ2+ cells, on CD3+CD4+ T cells (r=0.425, p=0.002, q=0.016). Gene Set Enrichment Analysis (GSEA) of a GEP dataset of CD4+ T cells isolated from SLE patients (n=8; GSE4588) showed that IL6ST expression was positively associated with genes upregulated in CD4+ T cells vs myeloid or B cells (q&lt;0.001). In an independent GEP dataset of CD4+ T cells isolated from SLE patients (n=9; GSE1057), IL6ST expression was induced upon anti-CD3 stimulation, and that Treg, TCM and CCR7+ T cells gene sets were significantly enriched (q&lt;0.05) by genes highly correlated with IL6ST expression (n=92 genes; r&gt;0.75 with IL6ST expression) upon anti-CD3 stimulation in these SLE patients. In conclusion, gp130 signaling in CD3+CD4+ T cell subsets may contribute to increased disease activity in SLE patients, and it represents a promising therapeutic target for inhibition in the disease.


2019 ◽  
Author(s):  
Xu Jiang ◽  
Shi-yu Wang ◽  
Chen Zhou ◽  
Jing-hua Wu ◽  
Yu-hao Jiao ◽  
...  

AbstractThe pathogenesis of rheumatoid arthritis (RA), a systemic autoimmune disease characterized by autoreactive T-cell accumulation and pro-inflammatory cytokine overproduction, is unclear. Systematically addressing T-cell receptor (TCR) repertoires of different CD4+ T-cell subsets could help understand RA pathogenesis. Here, peripheral CD4+ T cells from treatment-naïve RA patients and healthy controls were sorted into seven subsets including naïve, effector, central memory, effector memory (EMT), Th1, Th17, and regulatory T cells. T-cell receptor β chain repertoires were then analyzed by next-generation sequencing. We identified T-cell clonal expansion in EMT and Th17 cells, with highly similar TCR repertoires between them. Ex vivo experiments demonstrated the preferred differentiation from EMT to Th17 cells in RA. Moreover, TCR diversity in subsets including Th17 was negatively correlated with RA disease activity indices such as C-reactive protein and erythrocyte sedimentation rate. Thus, shared and abnormally expanded EMT and Th17 TCR repertoires might be pivotal for RA pathogenesis.


Sign in / Sign up

Export Citation Format

Share Document