scholarly journals Inflammation and Aging of Hematopoietic Stem Cells in Their Niche

Cells ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1849
Author(s):  
Daozheng Yang ◽  
Gerald de Haan

Hematopoietic stem cells (HSCs) sustain the lifelong production of all blood cell lineages. The functioning of aged HSCs is impaired, including a declined repopulation capacity and myeloid and platelet-restricted differentiation. Both cell-intrinsic and microenvironmental extrinsic factors contribute to HSC aging. Recent studies highlight the emerging role of inflammation in contributing to HSC aging. In this review, we summarize the recent finding of age-associated changes of HSCs and the bone marrow niche in which they lodge, and discuss how inflammation may drive HSC aging.

2012 ◽  
Vol 1266 (1) ◽  
pp. 72-77 ◽  
Author(s):  
Fumio Arai ◽  
Kentaro Hosokawa ◽  
Hirofumi Toyama ◽  
Yoshiko Matsumoto ◽  
Toshio Suda

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 4329-4329 ◽  
Author(s):  
Dhruv Desai ◽  
Anna Borodovsky ◽  
Wendell P Davis ◽  
Rohan Degaonkar ◽  
Kristina Yucius ◽  
...  

Abstract The Thrombopoietin (THPO)/ thrombopoietin receptor (MPL) signaling axis is not only critical for the generation of platelets and megakaryocytes, but also for the maintenance of hematopoietic stem cells (HSC) and the bone marrow niche. MPL is expressed on primitive HSC, HSC progenitors, megakaryocytes, platelets, osteoblasts and osteoclasts, clonal hematopoietic stem cells and many leukemias. THPO production is constitutive but is also increased by inflammatory cytokines. Sustained exposure to high levels of THPO not only enhances platelet production, but also has a profound effect on HSC and the bone marrow microenvironment. Excess THPO/MPL signaling, whether driven by inflammatory cytokines, or due to mutations in THPO, JAK2, MPL or CALR, is associated with HSC expansion, megakaryocyte hypertrophy and increased platelet count, excess release of megakaryocyte and platelet-based cytokines such as TGF-beta and PDGF-alpha, and the development of stromal myofibroblasts that drive tissue fibrosis and anemia. We developed a robust and clinically validated RNAi therapeutics platform for the delivery of siRNAs to the liver using trivalent N-acetylgalactosamine (GalNAc) conjugates, enabling specific silencing of hepatocyte-expressed genes following subcutaneous injection. Since liver is the major source of THPO expression, we utilized GalNAc-siRNA technology to develop siRNAs targeting THPO for evaluation in wild type mice and murine models of myeloproliferative neoplasms (MPN). Active siRNAs were identified by in vitro screening in primary mouse hepatocytes and the 12 best siRNAs were evaluated in vivo in normal mice to select the most potent siRNA. THPO liver mRNA levels were reduced by up to 80% after a single subcutaneous THPO siRNA dose, with no effect on THPO mRNA expression in other organs (kidney, and bone marrow, both of which had marginal THPO expression compared to liver). Circulating TPO levels were reduced by 80% by day 7 and were suppressed for up to 28 days post a single dose treatment. Platelet counts were reduced to 60% of baseline by day 14, and a further reduction to more than 70% of baseline was observed with every other week dosing. No changes in red blood cell or white blood cell subsets were observed. Platelet reduction was accompanied by a reduction in megakaryocyte mass, as evidenced by a 50% decrease in the number of bone marrow megakaryocytes in THPO siRNA treated mice compared to controls. Mice treated every other week with TPO siRNA for three months demonstrated sustained circulating THPO protein and platelet count reductions, and a significant reduction in bone marrow HSC, Lin-Sca1+Kit- (LSK) and multipotent progenitor (MPP) frequency. Evaluation of impact THPO silencing on MPN phenotypes in transgenic JAK2V617F mice is ongoing. THPO silencing is a potential novel targeted therapeutic approach that may be beneficial in benign and malignant conditions in which deregulated THPO/MPL signal transduction drives disease pathology. Disclosures No relevant conflicts of interest to declare.


2016 ◽  
Vol 48 ◽  
pp. 107-112 ◽  
Author(s):  
Fatemeh Norozi ◽  
Saeid Shahrabi ◽  
Saeideh Hajizamani ◽  
Najmaldin Saki

2015 ◽  
Vol 39 (10) ◽  
pp. 1099-1110 ◽  
Author(s):  
Iordanis Pelagiadis ◽  
Eftichia Stiakaki ◽  
Christianna Choulaki ◽  
Maria Kalmanti ◽  
Helen Dimitriou

2022 ◽  
Author(s):  
Merve Aksoz ◽  
Grigore-Aristide Gafencu ◽  
Bilyana Stoilova Stoilova ◽  
Mario Buono ◽  
Yiran Meng ◽  
...  

Hematopoietic stem cells (HSC) reconstitute multi-lineage human hematopoiesis after clinical bone marrow transplantation and are the cells-of-origin of hematological malignancies. Though HSC provide multi-lineage engraftment, individual murine HSCs are lineage-biased and contribute unequally to blood cell lineages. Now, by combining xenografting of molecularly barcoded adult human bone marrow (BM) HSCs and high-throughput single cell RNA sequencing we demonstrate that human individual BM HSCs are also functionally and transcriptionally lineage biased. Specifically, we identify platelet-biased and multi-lineage human HSCs. Quantitative comparison of transcriptomes from single HSCs from young, and aged, BM show that both the proportion of platelet-biased HSCs, and their level of transcriptional platelet priming, increases with age. Therefore, platelet-biased HSCs, as well as their increased prevalence and elevated transcriptional platelet priming during ageing, are conserved between human and murine hematopoiesis.


Author(s):  
Laura Mosteo ◽  
Joanna Storer ◽  
Kiran Batta ◽  
Emma J. Searle ◽  
Delfim Duarte ◽  
...  

Hematopoietic stem cells interact with bone marrow niches, including highly specialized blood vessels. Recent studies have revealed the phenotypic and functional heterogeneity of bone marrow endothelial cells. This has facilitated the analysis of the vascular microenvironment in steady state and malignant hematopoiesis. In this review, we provide an overview of the bone marrow microenvironment, focusing on refined analyses of the marrow vascular compartment performed in mouse studies. We also discuss the emerging role of the vascular niche in “inflamm-aging” and clonal hematopoiesis, and how the endothelial microenvironment influences, supports and interacts with hematopoietic cells in acute myeloid leukemia and myelodysplastic syndromes, as exemplar states of malignant myelopoiesis. Finally, we provide an overview of strategies for modulating these bidirectional interactions to therapeutic effect in myeloid malignancies.


2016 ◽  
Vol 364 (3) ◽  
pp. 573-584 ◽  
Author(s):  
Patrick Wuchter ◽  
Rainer Saffrich ◽  
Stefan Giselbrecht ◽  
Cordula Nies ◽  
Hanna Lorig ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Huihong Zeng ◽  
Jiaoqi Cheng ◽  
Ying Fan ◽  
Yingying Luan ◽  
Juan Yang ◽  
...  

Development of hematopoietic stem cells is a complex process, which has been extensively investigated. Hematopoietic stem cells (HSCs) in mouse fetal liver are highly expanded to prepare for mobilization of HSCs into the fetal bone marrow. It is not completely known how the fetal liver niche regulates HSC expansion without loss of self-renewal ability. We reviewed current progress about the effects of fetal liver niche, chemokine, cytokine, and signaling pathways on HSC self-renewal, proliferation, and expansion. We discussed the molecular regulations of fetal HSC expansion in mouse and zebrafish. It is also unknown how HSCs from the fetal liver mobilize, circulate, and reside into the fetal bone marrow niche. We reviewed how extrinsic and intrinsic factors regulate mobilization of fetal liver HSCs into the fetal bone marrow, which provides tools to improve HSC engraftment efficiency during HSC transplantation. Understanding the regulation of fetal liver HSC mobilization into the fetal bone marrow will help us to design proper clinical therapeutic protocol for disease treatment like leukemia during pregnancy. We prospect that fetal cells, including hepatocytes and endothelial and hematopoietic cells, might regulate fetal liver HSC expansion. Components from vascular endothelial cells and bones might also modulate the lodging of fetal liver HSCs into the bone marrow. The current review holds great potential to deeply understand the molecular regulations of HSCs in the fetal liver and bone marrow in mammals, which will be helpful to efficiently expand HSCs in vitro.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 600-600
Author(s):  
Manabu Matsunawa ◽  
Ryo Yamamoto ◽  
Masashi Sanada ◽  
Aiko Sato ◽  
Yusuke Shiozawa ◽  
...  

Abstract Frequent pathway mutation involving multiple components of the RNA splicing machinery is a cardinal feature of myeloid neoplasms showing myeloid dysplasia, in which the major mutational targets include U2AF35, ZRSR2, SRSF2 and SF3B1. Among these, SF3B1 mutations were strongly associated with MDS subtypes characterized by increased ring sideroblasts, such as refractory anemia and refractory cytopenia with multiple lineage dysplasia with ring sideroblasts, suggesting the critical role of SF3B1 mutations in these MDS subtypes. However, currently, the molecular mechanism of SF3B1mutation leading to the ring sideroblasts formation and MDS remains unknown. The SF3B1 is a core component of the U2-small nuclear ribonucleoprotein (U2 snRNP), which recognizes the 3′ splice site at intron–exon junctions. It was demonstrated that Sf3b1 null mice were shown to be embryonic lethal, while Sf3b1 +/- mice exhibited various skeletal alterations that could be attributed to deregulation of Hox gene expression due to haploinsufficiency of Sf3b1. However, no detailed analysis of the functional role of Sf3b1 in hematopoietic system in these mice has been performed. So, to clarify the role of SF3B1 in hematopoiesis, we investigated the hematological phenotype of Sf3b1 +/- mice. There was no significant difference in peripheral blood counts, peripheral blood lineage distribution, bone marrow total cellularity or bone marrow lineage composition between Sf3b1 +/+ and Sf3b1 +/- mice. Morphologic abnormalities of bone marrow and increased ring sideroblasts were not observed. However, quantitative analysis of bone marrow cells from Sf3b1 +/- mice revealed a reduction of the number of hematopoietic stem cells (CD34 neg/low, cKit positive, Sca-1 positive, lineage-marker negative: CD34-KSL cells) measured by flow cytometry analysis, compared to Sf3b1 +/+ mice. Whereas examination of hematopoietic progenitor cells revealed a small decrease in KSL cell populations and megakaryocyte - erythroid progenitors (MEP) in Sf3b1 +/- mice, and common myeloid progenitors (CMP), granulocyte - monocyte progenitors (GMP) and common lymphoid progenitors (CLP) remained unchanged between Sf3b1 +/+ and Sf3b1 +/- mice. In accordance with the reduced number of hematopoietic stem cells in Sf3b1 +/- mice, the total number of colony-forming unit generated from equal number of whole bone marrow cells showed lower colony number in Sf3b1 +/- mice in vitro. Competitive whole bone marrow transplantation assay, which irradiated recipient mice were transplanted with donor whole bone marrow cells from Sf3b1 +/+ or Sf3b1 +/- mice with an equal number of competitor bone marrow cells, revealed impaired competitive whole bone marrow reconstitution capacity of Sf3b1 +/- mice in vivo. These data demonstrated Sf3b1 was required for hematopoietic stem cells maintenance. To further examine the function of hematopoietic stem cells in Sf3b1 +/- mice, we performed competitive transplantation of purified hematopoietic stem cells from Sf3b1 +/+ or Sf3b1 +/- mice into lethally irradiated mice together with competitor bone marrow cells. Sf3b1 +/- progenitors showed reduced hematopoietic stem cells reconstitution capacity compared to those from Sf3b1 +/+ mice. In serial transplantation experiments, progenitors from Sf3b1 +/- mice showed reduced repopulation ability in the primary bone marrow transplantation, which was even more pronounced after the second bone marrow transplantation. Taken together, these data demonstrate that Sf3b1 plays an important role in normal hematopoiesis by maintaining hematopoietic stem cell pool size and regulating hematopoietic stem cell function. To determine the molecular mechanism underlying the observed defect in hematopoietic stem cells of Sf3b1 +/- mice, we performed RNA-seq analysis. We will present the results of our biological assay and discuss the relation of Sf3b1 and hematopoiesis. Disclosures: No relevant conflicts of interest to declare.


2021 ◽  
Vol 12 ◽  
Author(s):  
Qingqing Wu ◽  
Jizhou Zhang ◽  
Daniel Lucas

The shape and spatial organization -the anatomy- of a tissue profoundly influences its function. Knowledge of the anatomical relationships between parent and daughter cells is necessary to understand differentiation and how the crosstalk between the different cells in the tissue leads to physiological maintenance and pathological perturbations. Blood cell production takes place in the bone marrow through the progressive differentiation of stem cells and progenitors. These are maintained and regulated by a heterogeneous microenvironment composed of stromal and hematopoietic cells. While hematopoiesis has been studied in extraordinary detail through functional and multiomics approaches, much less is known about the spatial organization of blood production and how local cues from the microenvironment influence this anatomy. Here, we discuss some of the studies that revealed a complex anatomy of hematopoiesis where discrete local microenvironments spatially organize and regulate specific subsets of hematopoietic stem cells and/or progenitors. We focus on the open questions in the field and discuss how new tools and technological advances are poised to transform our understanding of the anatomy of hematopoiesis.


Sign in / Sign up

Export Citation Format

Share Document