scholarly journals Hallmarks of cancer—the new testament

Open Biology ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 200358
Author(s):  
Sasi S. Senga ◽  
Richard P. Grose

Diagnosis and treatment of disease demand a sound understanding of the underlying mechanisms, determining any Achilles' heel that can be targeted in effective therapies. Throughout history, this endeavour to decipher the origin and mechanism of transformation of a normal cell into cancer has led to various theories—from cancer as a curse to an understanding at the level of single-cell heterogeneity, meaning even among a single sub-type of cancer there are myriad molecular challenges to overcome. With increasing insight into cancer genetics and biology, the disease has become ever more complex to understand. The complexity of cancer as a disease was distilled into key traits by Hanahan and Weinberg in their seminal ‘Hallmarks of Cancer' reviews. This lucid conceptualization of complex cancer biology is widely accepted and has helped advance cancer therapeutics by targeting the various hallmarks but, with the advancement in technologies, there is greater granularity in how we view cancer as a disease, and the additional understanding over the past decade requires us to revisit the hallmarks of cancer. Based on extensive study of the cancer research literature, we propose four novel hallmarks of cancer, namely, the ability of cells to regress from a specific specialized functional state, epigenetic changes that can affect gene expression, the role of microorganisms and neuronal signalling, to be included in the hallmark conceptualization along with evidence of various means to exploit them therapeutically.

Cells ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2617
Author(s):  
Vitor Rodrigues da Costa ◽  
Rodrigo Pinheiro Araldi ◽  
Hugo Vigerelli ◽  
Fernanda D’Ámelio ◽  
Thais Biude Mendes ◽  
...  

Cancer is one of the most important health problems and the second leading cause of death worldwide. Despite the advances in oncology, cancer heterogeneity remains challenging to therapeutics. This is because the exosome-mediated crosstalk between cancer and non-cancer cells within the tumor microenvironment (TME) contributes to the acquisition of all hallmarks of cancer and leads to the formation of cancer stem cells (CSCs), which exhibit resistance to a range of anticancer drugs. Thus, this review aims to summarize the role of TME-derived exosomes in cancer biology and explore the clinical potential of mesenchymal stem-cell-derived exosomes as a cancer treatment, discussing future prospects of cell-free therapy for cancer treatment and challenges to be overcome.


Author(s):  
Jasmin Ali

Chromosomal instability (CIN), defined as an increased rate of gain or loss of whole chromosomes, leads to aneuploid cells, which are cells that display an abnormal number of chromosomes. Both CIN and aneuploidy are hallmarks of cancer, yet the underlying mechanisms of CIN and aneuploidy and their impact on tumourigenesis have remained poorly defined. Although multiple mechanisms have been proposed to explain the role of CIN and aneuploidy in tumourigenesis, this review focuses on three principal pathways leading to CIN: spindle assembly checkpoint defects, merotelic attachments, and cohesion defects. Here, we provide a brief overview of the current understanding of the roles of these mechanisms in CIN and aneuploidy. We also present emerging evidence that contradicts the importance of certain mechanisms in cancer evolution. A clearer understanding of these fundamental pathways could prove to be helpful in developing effective cancer therapies.


Author(s):  
Shanshan Zhao ◽  
Xue Zhang ◽  
Shuo Chen ◽  
Song Zhang

Abstract Natural antisense transcripts (NATs), which are transcribed from opposite strands of DNA with partial or complete overlap, affect multiple stages of gene expression, from epigenetic to post-translational modifications. NATs are dysregulated in various types of cancer, and an increasing number of studies focusing on NATs as pivotal regulators of the hallmarks of cancer and as promising candidates for cancer therapy are just beginning to unravel the mystery. Here, we summarize the existing knowledge on NATs to highlight their underlying mechanisms of functions in cancer biology, discuss their potential roles in therapeutic application, and explore future research directions.


2019 ◽  
Author(s):  
Tajamul Islam Shah

Cancer and natural products: an overview is intended for both undergraduate and post graduate-level students (including medical students) and employees in the pharmaceutical industry interested in learning about how a normal cell becomes transformed into a cancer cell. Signaling pathways of a cell detect and respond to changes in the environment and regulate normal cellular activities. Cells contain many receptors on their membrane that allow a signal from outside the cell (e.g. growth factors) to be transmitted to the inside of the cell. The relay of information may cause a change in cell behavior or in gene expression, and results in a cellular response. Interference in these signal transduction pathways has grave consequences and may lead to the transformation of a normal cell into a cancer cell. The identification of the malfunctions of specific pathways involved in carcinogenesis provides scientists with molecular targets that can be used to generate new cancer therapeutics. I have chosen to present the biology of cancer together with a promise to design and formulate effective anti-cancer drugs from Mother Nature with negligible side effects and to replace the conventional therapies. I hope that this presentation stimulates interest and motivates learning of the subject matter. Efforts have been made to avoid overburdening the students/readers with preceding information and get laden with lucid and latest information in the field of cancer and its natural therapeutics. The author’s primary goal has been clear writing and meaningful figures. All attempts have been made in the present work to provide an integrated approach covering an overview of cancer biology, cancer genetics, carcinogenesis and promising loom from Mother Nature. I hope that this presentation stimulates interest and motivates learning of the subject matter. You may reach author at: [email protected]


Oncogenesis ◽  
2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Min Zhou ◽  
Jianlong Yuan ◽  
Yaqi Deng ◽  
Xianqun Fan ◽  
Jianfeng Shen

AbstractMammalian SWI/SNF complex is a key chromatin remodeler that reshapes nucleosomes and regulates DNA accessibility. Mutations in SWI/SNF subunits are found in a broad spectrum of human cancers; however, the mechanisms of how these aberrations of SWI/SNF complex would impact tumorigenesis and cancer therapeutics remain to be elucidated. Studies have demonstrated that immune checkpoint blockade (ICB) therapy is promising in cancer treatment. Nevertheless, suitable biomarkers that reliably predict the clinical response to ICB are still lacking. Emerging evidence has suggested that SWI/SNF components play novel roles in the regulation of anti-tumor immunity, and SWI/SNF deficiency can be therapeutically targeted by ICB. These findings manifest the prominence of the SWI/SNF complex as a stratification biomarker that predicts treatment (therapeutic) response to ICB. In this review, we summarize the recent advances in ICB therapy by harnessing the cancer-specific vulnerability elicited by SWI/SNF deficiency. We provide novel insights into a comprehensive understanding of the underlying mechanisms by which SWI/SNF functions as a modulator of anti-tumor immunity.


2020 ◽  
Vol 6 (2) ◽  
pp. 21
Author(s):  
Muhammad Ali ◽  
Fatima Ali ◽  
Nadia Wajid

Since the cancer stem cells (CSC) have been identified in 1997 by Bonnet and Dick, more than 100,000 papers have been published on the CSC. Huge research on cancer stem cells helped the scientists to rethink about the cancer therapeutics as classic way of chemotherapy is ineffective because chemotherapy failed to kill these cells, the only reason of cancer relapse. The cancer theory of stem cells is one of the most trending theory in stem cells and cancer biology focusing on the understanding of biology of cancer cells for an enhanced and improved therapeutic approaches should be applied to cure the cancer. This mini-review is a short overview on the role of organ specific cancer stem cells in the organ specific cancer progression.


2017 ◽  
Vol 45 (4) ◽  
pp. 905-911 ◽  
Author(s):  
Pernille Hojman

Exercise training has been extensively studied in cancer settings as part of prevention or rehabilitation strategies, yet emerging evidence suggests that exercise training can also directly affect tumor-specific outcomes. The underlying mechanisms for this exercise-dependent cancer protection are just starting to be elucidated. To this end, evasion of immune surveillance and tumor-associated inflammation are established as hallmarks of cancer, and exercise may target cancer incidence and progression through regulation of these mechanisms. Here, I review the role of exercise in protection from cancer through mobilization and activation of cytotoxic immune cells, restriction of inflammatory signaling pathways in myeloid immune cells, and regulation of acute and chronic systemic inflammatory responses. In conclusion, I propose that exercise has the potential to target tumor growth through regulation of immune and inflammatory functions, and exercise may be pursued as anticancer treatment through incorporation into standard oncological therapy to the benefit of the cancer patients.


2016 ◽  
Vol 310 (7) ◽  
pp. C509-C519 ◽  
Author(s):  
A. Fiorio Pla ◽  
K. Kondratska ◽  
N. Prevarskaya

Intracellular Ca2+ signals play a central role in several cellular processes; therefore it is not surprising that altered Ca2+ homeostasis regulatory mechanisms lead to a variety of severe pathologies, including cancer. Stromal interaction molecules (STIM) and ORAI proteins have been identified as critical components of Ca2+ entry in both store-dependent (SOCE mechanism) and independent by intracellular store depletion and have been implicated in several cellular functions. In recent years, both STIMs and ORAIs have emerged as possible molecular targets for cancer therapeutics. In this review we focus on the role of STIM and ORAI proteins in cancer progression. In particular we analyze their role in the different hallmarks of cancer, which represent the organizing principle that describes the complex multistep process of neoplastic diseases.


Cancers ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 432
Author(s):  
Rohit Gundamaraju ◽  
Wenying Lu ◽  
Rishya Manikam

The Warburg effect has immensely succored the study of cancer biology, especially in highlighting the role of mitochondria in cancer stemness and their benefaction to the malignancy of oxidative and glycolytic cancer cells. Mitochondrial genetics have represented a focal point in cancer therapeutics due to the involvement of mitochondria in programmed cell death. The mitochondrion has been well established as a switch in cell death decisions. The mitochondrion’s instrumental role in central bioenergetics, calcium homeostasis, and translational regulation has earned it its fame in metastatic dissemination in cancer cells. Here, we revisit and review mechanisms through which mitochondria influence oncogenesis and metastasis by underscoring the oncogenic mitochondrion that is capable of transferring malignant capacities to recipient cells.


Sign in / Sign up

Export Citation Format

Share Document