scholarly journals Restoring Osteochondral Defects through the Differentiation Potential of Cartilage Stem/Progenitor Cells Cultivated on Porous Scaffolds

Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3536
Author(s):  
Hsueh-Chun Wang ◽  
Tzu-Hsiang Lin ◽  
Che-Chia Hsu ◽  
Ming-Long Yeh

Cartilage stem/progenitor cells (CSPCs) are cartilage-specific, multipotent progenitor cells residing in articular cartilage. In this study, we investigated the characteristics and potential of human CSPCs combined with poly(lactic-co-glycolic acid) (PLGA) scaffolds to induce osteochondral regeneration in rabbit knees. We isolated CSPCs from human adult articular cartilage undergoing total knee replacement (TKR) surgery. We characterized CSPCs and compared them with infrapatellar fat pad-derived stem cells (IFPs) in a colony formation assay and by multilineage differentiation analysis in vitro. We further evaluated the osteochondral regeneration of the CSPC-loaded PLGA scaffold during osteochondral defect repair in rabbits. The characteristics of CSPCs were similar to those of mesenchymal stem cells (MSCs) and exhibited chondrogenic and osteogenic phenotypes without chemical induction. For in vivo analysis, CSPC-loaded PLGA scaffolds produced a hyaline-like cartilaginous tissue, which showed good integration with the host tissue and subchondral bone. Furthermore, CSPCs migrated in response to injury to promote subchondral bone regeneration. Overall, we demonstrated that CSPCs can promote osteochondral regeneration. A monophasic approach of using diseased CSPCs combined with a PLGA scaffold may be beneficial for repairing complex tissues, such as osteochondral tissue.

2020 ◽  
Vol 21 (10) ◽  
pp. 3589 ◽  
Author(s):  
Daiki Murata ◽  
Ryota Fujimoto ◽  
Koichi Nakayama

Osteoarthritis (OA) is a major joint disease that promotes locomotor deficiency during the middle- to old-age, with the associated disability potentially decreasing quality of life. Recently, surgical strategies to reconstruct both articular cartilage and subchondral bone for OA have been diligently investigated for restoring joint structure and function. Adipose tissue-derived mesenchymal stem cells (AT-MSCs), which maintain pluripotency and self-proliferation ability, have recently received attention as a useful tool to regenerate osteocartilage for OA. In this review, several studies were described related to AT-MSC spheroids, with scaffold and scaffold-free three-dimensional (3D) constructs produced using “mold” or “Kenzan” methods for osteochondral regeneration. First, several examples of articular cartilage regeneration using AT-MSCs were introduced. Second, studies of osteochondral regeneration (not only cartilage but also subchondral bone) using AT-MSCs were described. Third, examples were presented wherein spheroids were produced using AT-MSCs for cartilage regeneration. Fourth, osteochondral regeneration following autologous implantation of AT-MSC scaffold-free 3D constructs, fabricated using the “mold” or “Kenzan” method, was considered. Finally, prospects of osteochondral regeneration by scaffold-free 3D constructs using AT-MSC spheroids were discussed.


2021 ◽  
Author(s):  
Weiping Lin ◽  
Zhengmeng Yang ◽  
Liu Shi ◽  
Haixing Wang ◽  
Qi Pan ◽  
...  

Abstract Background: Osteoarthritis (OA) is a chronic joint disease, characterized by articular cartilage degradation, subchondral bone hardening, and inflammation of the whole synovial joint. There is no pharmacological treatment in slowing down OA progression, leading to costly surgical interventions eventually. Cell therapy using chondrocytes or progenitor cells from different sources has been reported in clinical trials for OA management with some success, but outcomes are varied. Peripheral blood derived mesenchymal stem cells (PB-MSCs) are promising cells owing to their easy collection, superior migration, and differentiation potentials. In the current study, we evaluated the effect of intra-articular administration of PB-MSCs on the progression of OA in mice.Methods: C57BL/6J mice (8-10 weeks old male) were subjected to destabilization of the medial meniscus surgeries (DMM) on their right joints following protocols as previously reported. The mice after DMM were randomly treated with saline (vehicle control), PB-MSCs, or adipose tissue derived MSCs (AD-MSCs) (n = 7 per group). The mice treated with sham surgery were regarded as sham controls (n = 7). PB-MSCs and AD-MSCs were harvested and cultured according to previous published protocols, and pre-labeled with BrdU for 48 h before use. PB-MSCs or AD-MSCs (5 × 105 cells/mouse; passage 3~5) were injected into the right knee joints thrice post-surgery (except sham surgery group). The mice were euthanized at 8 weeks post-surgery and knee joint samples were collected for micro-CT and histological examinations.Results: PB-MSCs administration significantly reduced hardening of subchondral bone comparing to vehicle controls. Safranin O staining showed that PB-MSCs treatment ameliorated degeneration of articular cartilage, which is comparable to AD-MSCs treatment. The expression of catabolic marker MMP13 was significantly reduced in articular cartilage of PB-MSCs-treated groups comparing to vehicle controls. Co-expression of BrdU and Sox9 were detected, indicating injected PB-MSCs differentiated towards chondrocytes in situ. Reduced level of IL-6 in the peripheral sera of PB-MSCs- and AD-MSCs-treated mice was also determined. Conclusions: Repetitive administration of PB-MSCs or AD-MSCs halted OA progression through inhibiting cartilage degradation and inflammation. PB-MSCs may become a promising cell source for cartilage tissue repair and alleviation of OA progression.


Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Albert Spicher ◽  
Andrea Meinhardt ◽  
Marc-Estienne Roehrich ◽  
Giuseppe Vassalli

Identification of stem cells based on hematopoietic stem cell (HSC) surface markers, such as stem cell antigen-1 (Sca-1) and the c-kit receptor, has limited specificity. High aldehyde-dehydrogenase (ALDH) activity is a general cellular property of stem cells shared by HSC, neural, and intestinal stem cells. The presence of cells with high ALDH activity in the adult heart has not been investigated. Methods: Cells were isolated from adult mouse hearts, and from atrial appendage samples from humans with ischemic or valvular heart disease. Myocyte-depleted mouse Sca-1+, and lineage (Lin)-negative/c-kit+ human heart cells were purified with immunomagnetic beads. ALDH-high cells were identified using a specific fluorescent substrate, and sorted by FACS. Cell surface marker analysis was performed by flow cytometry. Results: Myocyte-depleted mouse heart cells contained 4.8+/−3.2% ALDH-high/SSC-low and 32.6+/−1.6% Sca-1+ cells. ALDH-high cells were Lin-negative, Sca-1+ CD34+ CD105+ CD106+, contained small CD44+ (27%) and CD45+ (15%) subpopulations, and were essentially negative for c-kit (2%), CD29, CD31, CD133 and Flk-1. After several passages in culture, ~20% of ALDH-high cells remained ALDH-high. Myocyte-depleted human atrial cells contained variable numbers of ALDH-high cells ranging from 0.5% to 11%, and 4% Lin-negative/c-kit+ cells. ALDH-high cells were CD29+ CD105+, contained a small c-kit+ subpopulation (5%), and were negative for CD31, CD45 and CD133. After 5 passages in culture, the majority of ALDH-high cells remained ALDH-high. Conclusions: Adult mouse and human hearts contain significant numbers of cells with high ALDH activity, a general cellular property that stem cells possess in different organs, and express stem cell markers (Sca-1 and CD34 in the mouse). The immunophenotype of cardiac-resident ALDH-high cells differs from that previously described for bone marrow ALDH-high HSC, and suggests that this cell population may be enriched in mesenchymal progenitors. Analysis of lineage differentiation potential of ALDH-high cells is in progress. ALDH activity provides a new, practical approach to purifying cardiac-resident progenitor cells.


2014 ◽  
Vol 111 (8) ◽  
pp. 1686-1698 ◽  
Author(s):  
Tariq Mesallati ◽  
Conor T. Buckley ◽  
Daniel J. Kelly

2013 ◽  
Vol 319 (18) ◽  
pp. 2856-2865 ◽  
Author(s):  
Achim Salamon ◽  
Anika Jonitz-Heincke ◽  
Stefanie Adam ◽  
Joachim Rychly ◽  
Brigitte Müller-Hilke ◽  
...  

Biomolecules ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 1070 ◽  
Author(s):  
Benjamen O'Donnell ◽  
Sara Al-Ghadban ◽  
Clara Ives ◽  
Michael L'Ecuyer ◽  
Tia Monjure ◽  
...  

Osteoarthritis (OA) is a common joint disorder with a significant economic and healthcare impact. The knee joint is composed of cartilage and the adjoining bone, a synovial capsule, the infrapatellar fat pad (IPFP), and other connective tissues such as tendons and ligaments. Adipose tissue has recently been highlighted as a major contributor to OA through strong inflammation mediating effects. In this study, methacrylated gelatin (GelMA) constructs seeded with adipose tissue-derived mesenchymal stem cells (ASCs) and cultured in a 3D printed bioreactor were investigated for use in microphysiological systems to model adipose tissue in the knee joint. Four patient-derived ASC populations were seeded at a density of 20 million cells/mL in GelMA. Live/Dead and boron-dipyrromethene/4′,6-diamidino-2-phenylindole (BODIPY/DAPI) staining of cells within the constructs demonstrated robust cell viability after 28 days in a growth (control) medium, and robust cell viability and lipid accumulation in adipogenic differentiation medium. qPCR gene expression analysis and protein analysis demonstrated an upregulated expression of key adipogenesis-associated genes. Overall, these data indicate that ASCs retain their adipogenic potential when seeded within GelMA hydrogels and cultured within perfusion bioreactors, and thus can be used in a 3D organ-on-a-chip system to study the role of the IPFP in the pathobiology of the knee OA.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2422-2422
Author(s):  
Ariane Tormin ◽  
Jan Claas Brune ◽  
Stuart Walsh ◽  
Johan Richter ◽  
Xiaolong Fan ◽  
...  

Abstract Culture-derived mesenchymal stromal cells (MSC), which are attractive candidates for clinical cell therapy approaches, arise from primary MSC progenitor/stem cells in the bone marrow. Recently, several groups have reported markers (CD271, CD146, GD2, SSEA4, etc.) that allowed for an enrichment of CFU-F, i.e. primary MSC progenitors. However, the exact phenotype of the bona fide mesenchymal stem/progenitor cells has not yet not been sufficiently defined. We therefore aimed to investigate primary MSC in bone marrow subpopulations defined by the expression of CD271 and CD146, as both markers have been reported to contain all assayable CFU-F and stromal stem cells, respectively (Quirici et al., Exp. Hematol. 2002; Sacchetti et al, Cell, 2007). Utilizing multi-color flow cytometry, unfractionated human bone marrow mononuclear cells (BM-MNC) were found to contain 0.05 ± 0.05% CD271+/CD146+ cells, whereas 0.82 ± 0.43% and 0.71 ± 0.23% were single-positive for CD271 and CD146, respectively. CD271/CD146 subpopulations were FACS sorted from lineage-depleted BM-MNC (RosetteSep) and assayed for CFU-F content (n=3). CFU-F could not be detected in the CD271−/CD146− fraction. In contrast, CFU-F initiating cells were highly enriched in the CD271+/CD146+/CD45−/low fraction (1.1 ± 0.2 CFU-F per 10 plated cells), which corresponds to a ca. 400-fold enrichment compared to the entire lineage-depleted fraction (2.7 ± 3.4 CFU-F per 1 × 104 plated cells). Of note, CFU-F could also be assayed at high frequency from CD271+/CD146− cells (20.4 ± 22.6 CFU-F per 1 × 104 plated cells). Generally, CFU-F were not found in the CD271+/CD146+/CD45+ and the CD271−/CD146+ fractions, and were also not detectable within the whole CD271+/CD45+ population of unfractionated BM-MNC (n=4), which, however, gave rise to erythropoietic colonies. The two CFU-F enriched populations, i.e. CD271+/CD146+/CD45−/low and CD271+/CD146− cells, were then cultured under standard MSC growth conditions. MSC derived from both populations exhibited a typical MSC surface marker profile (CD105+, CD90+, CD73+, HLA-class I+, CD45−, CD34−, CD19−, CD14−, HLA-DR−) and typical MSC differentiation (adipocytes, osteoblasts, chondrocytes). Interestingly, MSC generated from CD271+/CD146− cells became positive for CD146 in culture and stable CD146 expression over time was observed for MSC from both populations (up to the 5th passage, average 82 ± 11%). In contrast, over the same culture period CD271 expression decreased with passage number and an average of only 10 ± 4% of the cultured cells remained positive for CD271. To further characterize the CFU-F enriched subpopulations, single cells from CD271+/CD146+/CD45−/low and CD271+/CD146−/CD45−/low cells were sorted into fibronectin-coated 96-well plates to investigate colony growth and differentiation potential. CFU-F frequencies in this assay were 4 per 96 seeded cells for both populations and all but one of the CD271+/CD146+/CD45−/low clones could be further expanded in culture. Subpopulation-derived clones were capable of typical MSC differentiation and MSC derived from CD271+/CD146−/CD45−/low clones–similar to the bulk cultures–became CD146 positive (89 ± 12%) after 2 passages, whereas here CD271 expression was not lost. Taken together, CD271+/CD146+/CD45−/low and CD271+/CD146−/CD45−/low bone marrow cells are highly enriched for primary MSC progenitor cells. The difference in CD146 expression, which disappears in culture, might relate different localizations of the primary cells in the marrow but might possibly also reflect functional differences, e.g. in stemness. Accordingly, experiments addressing in-situ location, in vivo differentiation potential, gene expression and surface-marker expression profiling of primary MSC are currently under way.


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Navneet Kumar Dubey ◽  
Viraj Krishna Mishra ◽  
Rajni Dubey ◽  
Shabbir Syed-Abdul ◽  
Joseph R. Wang ◽  
...  

Knee osteoarthritis (OA) is a chronic degenerative disorder which could be distinguished by erosion of articular cartilage, pain, stiffness, and crepitus. Not only aging-associated alterations but also the metabolic factors such as hyperglycemia, dyslipidemia, and obesity affect articular tissues and may initiate or exacerbate the OA. The poor self-healing ability of articular cartilage due to limited regeneration in chondrocytes further adversely affects the osteoarthritic microenvironment. Traditional and current surgical treatment procedures for OA are limited and incapable to reverse the damage of articular cartilage. To overcome these limitations, cell-based therapies are currently being employed to repair and regenerate the structure and function of articular tissues. These therapies not only depend upon source and type of stem cells but also on environmental conditions, growth factors, and chemical and mechanical stimuli. Recently, the pluripotent and various multipotent mesenchymal stem cells have been employed for OA therapy, due to their differentiation potential towards chondrogenic lineage. Additionally, the stem cells have also been supplemented with growth factors to achieve higher healing response in osteoarthritic cartilage. In this review, we summarized the current status of stem cell therapies in OA pathophysiology and also highlighted the potential areas of further research needed in regenerative medicine.


Sign in / Sign up

Export Citation Format

Share Document