scholarly journals Characteristics and Potentiality of Human Adipose-Derived Stem Cells (hASCs) Obtained from Enzymatic Digestion of Fat Graft

Cells ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 282 ◽  
Author(s):  
Pietro Gentile ◽  
Maria Piccinno ◽  
Claudio Calabrese

Human adipose-derived stem cells localize in the stromal-vascular portion, and can be ex vivo isolated using a combination of washing steps and enzymatic digestion. For this study, we undertook a histological evaluation of traditional fat graft compared with fat graft enriched with stromal vascular fraction cells isolated by the Celution™ system to assess the interactions between cells and adipose tissue before the breast injection. In addition, we reported on histological analyses of biopsies derived from fat grafted (traditional or enriched with SVFs) in the breast in order to assess the quality of the adipose tissue, fibrosis and vessels. The hASCs derived from enzymatic digestion were systematically characterized for growth features, phenotype and multi-potent differentiation potential. They fulfill the definition of mesenchymal stem cells, albeit with a higher neural phenotype profile. These cells also express genes that constitute the core circuitry of self-renewal such as OCT4, SOX2, NANOG and neurogenic lineage genes such as NEUROD1, PAX6 and SOX3. Such findings support the hypothesis that hASCs may have a potential usefulness in neurodegenerative conditions. These data can be helpful for the development of new therapeutic approaches in personalized medicine to assess safety and efficacy of the breast reconstruction.

2007 ◽  
Vol 293 (5) ◽  
pp. E1153-E1158 ◽  
Author(s):  
Hui Ren Zhou ◽  
Eun-Kyoung Kim ◽  
Hyojung Kim ◽  
Kate J. Claycombe

Studies showed that monocyte chemotactic protein-1 (MCP-1) concentrations are increased in obesity. In our current study, we demonstrate that plasma MCP-1 level in leptin-deficient ob/ob mice is significantly higher than in lean mice. Furthermore, we determined that basal adipose tissue MCP-1 mRNA levels are significantly higher in ob/ob mice compared with lean mice. To determine the mechanisms underlying obesity-associated increases in plasma and adipose tissue MCP-1 levels, we determined adipose tissue cell type sources of MCP-1 production. Our data show that adipose tissue stem cells (CD34+), macrophages (F4/80+), and stromal vascular fraction (SVF) cells express significantly higher levels of MCP-1 compared with adipocytes under both basal and lipopolysaccharide (LPS)-stimulated conditions. Furthermore, basal and LPS-induced MCP-1 secretion levels were the same for both adipose F4/80+ and CD34+ cells, whereas adipose CD34+ cells have twofold higher cell numbers (30% of total SVF cells) compared with F4/80+ macrophages (15%). Our data also show that CD34+ cells from visceral adipose tissue depots secrete significantly higher levels of MCP-1 ex vivo when compared with CD34+ cells from subcutaneous adipose tissue depots. Taken together, our data suggest that adipose CD34+ stem cells may play an important role in obesity-associated increases in plasma MCP-1 levels.


2020 ◽  
Vol 21 (8) ◽  
pp. 2869
Author(s):  
Felix Grambow ◽  
Rico Rutkowski ◽  
Fred Podmelle ◽  
Katrin Schmoeckel ◽  
Florian Siegerist ◽  
...  

The local anesthetic lidocaine, which has been used extensively during liposuction, has been reported to have cytotoxic effects and therefore would be unsuitable for use in autologous lipotransfer. We evaluated the effect of lidocaine on the distribution, number, and viability of adipose-derived stem cells (ASCs), preadipocytes, mature adipocytes, and leukocytes in the fatty and fluid portion of the lipoaspirate using antibody staining and flow cytometry analyses. Adipose tissue was harvested from 11 female patients who underwent liposuction. Abdominal subcutaneous fat tissue was infiltrated with tumescent local anesthesia, containing lidocaine on the left and lacking lidocaine on the right side of the abdomen, and harvested subsequently. Lidocaine had no influence on the relative distribution, cell number, or viability of ASCs, preadipocytes, mature adipocytes, or leukocytes in the stromal-vascular fraction. Assessing the fatty and fluid portions of the lipoaspirate, the fatty portions contained significantly more ASCs (p < 0.05), stem cells expressing the preadipocyte marker Pref-1 (p < 0.01 w/lidocaine, p < 0.05 w/o lidocaine), and mature adipocytes (p < 0.05 w/lidocaine, p < 0.01 w/o lidocaine) than the fluid portions. Only the fatty portion should be used for transplantation. This study found no evidence that would contraindicate the use of lidocaine in lipotransfer. Limitations of the study include the small sample size and the inclusion of only female patients.


Drug Research ◽  
2018 ◽  
Vol 68 (08) ◽  
pp. 450-456 ◽  
Author(s):  
Leila Mousazadeh ◽  
Effat Alizadeh ◽  
Nosratollah Zarghami ◽  
Shahryar Hashemzadeh ◽  
Sedigheh Aval ◽  
...  

Abstract Back ground Adipose tissue derived mesenchymal stem cells (ASCs) have unique potential for regenerative cell therapies. However, during ex-vivo cultivation, they undergo considerable quality loss regarding their phenotypic properties, stemness genes expression and differentiation potential. Recent studies reported that the loss of stemness properties of MSCs is a result of chromatin histone deacetylations through in-vitro cultivation. The present work aimed to study the effect of Trapoxin A (TPX) as a histone deacetylase inhibitor (HDACi) on overall stemness properties of ASCs. Methods First, the effects of TPX treatments on ASCs viability and proliferation were evaluated using MTT assay. Second, the desired doses of TPX supporting ASCs proliferation were determined and the lack of their negative effects was confirmed by DAPI staining. In addition, the influence of TPX on cell cycle of ASCs and the mRNA levels of stemness genes were measured by flowcytometry and qPCR, respectively. Finally, the effect of TPX treatment on osteogenic potential of ASCs was studied. Results The results indicated that short time TPX treatment (nM concentrations) caused stimulation of proliferation and considerable percentage of ASCs entered to S-phase of cell cycle (p<0.05). Moreover, the findings demonstrated significant up-regulation of stemness markers genes (Oct-4, Sox-2, Nanog, TERT, Klf-4, Rex-1) (p<0.05) and enhanced osteogenic differentiation potential of ASC after TPX treatment. Conclusion The addition of low dose of TPX to the expansion medium could possibly enhance the stemness properties and prevent the quality decline of ex-vivo cultured ASCs.


2010 ◽  
Vol 224 (3) ◽  
pp. 807-816 ◽  
Author(s):  
Young-Il Yang ◽  
Hyeong-In Kim ◽  
Min-Young Choi ◽  
Sung-Hee Son ◽  
Min-Jeong Seo ◽  
...  

2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Aimei Jiang ◽  
Ming Li ◽  
Wenjing Duan ◽  
Yilong Dong ◽  
Yanmei Wang

Adipose-derived stem cells (ASCs) transplanted along with autologous adipose tissue may improve fat graft survival; however, the efficacy of ASCs has been diluted by low vascularization. This study was designed to test the hypothesis that basic fibroblast growth factor (bFGF) may improve the effects of ASCs because it owns the property to boost angiogenesis. In the present study, human fat tissues were mixed with ASCs, ASCs plus 100 U bFGF, or medium as the control and then injected subcutaneously into immunologically compromised nude mice for 12 weeks. Our findings demonstrated that mixture with the ASCs significantly increased the weight and volume of the fat grafts compared to control grafts, and histological analysis revealed that both ASCs and ASCs plus bFGF grafts consisted predominantly of adipose tissue and had significantly less fibrosis but greater microvascular density compared with control and also grafts mixed with ASCs had a high expression of angiogenic factors. More importantly, the bFGF treated fat grafts shown elevate in survival, vascularization, and angiogenic factors expression when compared with the grafts that received ASCs alone. These results indicated that bFGF together with ASCs can enhance the efficacy of autologous fat transplantation and increase blood vessel generation involved in the benefits from bFGF.


2022 ◽  
Vol 12 (1) ◽  
pp. 117
Author(s):  
Agnieszka Surowiecka ◽  
Jerzy Strużyna

The interest in regenerative medicine is increasing, and it is a dynamically developing branch of aesthetic surgery. Biocompatible and autologous-derived products such as platelet-rich plasma or adult mesenchymal stem cells are often used for aesthetic purposes. Their application originates from wound healing and orthopaedics. Adipose-derived stem cells are a powerful agent in skin rejuvenation. They secrete growth factors and anti-inflammatory cytokines, stimulate tissue regeneration by promoting the secretion of extracellular proteins and secrete antioxidants that neutralize free radicals. In an office procedure, without cell incubation and counting, the obtained product is stromal vascular fraction, which consists of not only stem cells but also other numerous active cells such as pericytes, preadipocytes, immune cells, and extra-cellular matrix. Adipose-derived stem cells, when injected into dermis, improved skin density and overall skin appearance, and increased skin hydration and number of capillary vessels. The main limitation of mesenchymal stem cell transfers is the survival of the graft. The final outcomes are dependent on many factors, including the age of the patient, technique of fat tissue harvesting, technique of lipoaspirate preparation, and technique of fat graft injection. It is very difficult to compare available studies because of the differences and multitude of techniques used. Fat harvesting is associated with potentially life-threatening complications, such as massive bleeding, embolism, or clots. However, most of the side effects are mild and transient: primarily hematomas, oedema, and mild pain. Mesenchymal stem cells that do not proliferate when injected into dermis promote neoangiogenesis, that is why respectful caution should be taken in the case of oncologic patients. A longer clinical observation on a higher number of participants should be performed to develop reliable indications and guidelines for transferring ADSCs.


2019 ◽  
Vol 6 (3) ◽  
pp. 3073-3082 ◽  
Author(s):  
Karina Karina ◽  
Iis Rosliana ◽  
Siti Sobariah ◽  
Imam Rosadi ◽  
Irsyah Afini ◽  
...  

Introduction: Hyperglycemia in diabetic patients induces elevated pro-inflammatory cytokine production, resulting in cellular damage, which may affect the regenerative function of mesenchymal stem cells (MSCs), such as adipose-derived stem cells (ADSCs). Identifying the effect of diabetes on ADSCs and optimization of culture conditions is therefore an important starting point for the application of autologous stem cells to improve clinicial outcomes. The aim of this study was to investigate the effect of diabetes on ADSCs that cultured in low-glucose anti-oxidant-serum supplemented medium. Methods: In this study, freshly isolated stromal vascular fraction (SVF) and expanded ADSCs were compared between diabetic and non-diabetic donors. SVF were isolated from the abdominal fat, and total viable cells and viability were estimated. Fresh SVF were cultured in low-glucose (100 mg/dL) culture medium supplemented with an anti-oxidant and fetal bovine serum (complete culture medium) at a low density for 14 days for the colony formation unit-fibroblast (CFU-F) assay. The remaining SVF were expanded to obtain ADSCs in the complete culture medium, which were evaluated based on MSCs surface marker expression and three lineage differentiation potential. Diabetic and non-diabetic ADSCs were compared with respect to population doubling time and viability after serial passage. Results: Total viable counts (0.97 +/- 0.39 x 109 cells/10 mL of adipose tissue, 0.56 +/- 0.39 x 109 cells/10 mL of adipose tissue, p=0.02, independent t-test), but not viability (98.63 +/- 1.12%, 98.20 +/- 1.21%, p= 0.38, independent t-test), were significantly higher for SVF cells from adipose tissues of non-diabetic donors than diabetic donors. Fewer CFU-F were obtained from cultured diabetic SVF than from non-diabetic SVF. Diabetic and non-diabetic ADSCs had similar differentiation potency and CD73 (99.44 +/- 0.34%, 97.15 +/- 5.37%, p= 0.21, Mann-Whitney U test) and CD90 (97.30 +/- 2.86%, 95.06 +/- 6.32%, p= 0.90, Mann- Whitney U test) expression, but significantly fewer diabetic ADSCs expressed CD105 or endoglin, a marker for angiogenesis (89.91 +/- 7.14%, 57.90 +/- 21.36% for non-diabetic and diabetic groups, p< 0.001, Mann-Whitney U test). Diabetic ADSCs tended to exhibit slower proliferation (4.43 +/- 2.70 days, 3.04 +/- 0.55 days, p= 0.27 in passage 2 (P2); 3.95 +/- 1.55 days, 2.96 +/- 0.91 days, p= 0.21 in P3, independent t-test) and lower viability than those of non-diabetic ADSCs (77.65 +/- 10.61%, 87.13 +/- 10.06%, p= 0.25 in P2; 82.70 +/- 8.07%, 91.15 +/- 3.77%, p= 0.04 in P3, independent t-test). Culture in low-glucose anti-oxidant-serum supplemented medium did not improve CD105 expression (65.14 +/- 5.86%, 71.06 +/- 10.27%, 64.05 +/- 10.04%, p= 0.70, for P1, P2, and P3, respectively, repeated measure ANOVA) and cell proliferation (p= 0.50 for P2 vs. P3, paired t-test) of diabetic ADSCs. Conclusions: Overall, diabetes reduced CD105 expression and ADSCs proliferation, suggesting that the angiogenic potency of diabetic ADSCs is reduced. The diabetic ADSCs in this study were also more prone to cell death caused by handling technique compared to non-diabetic ADSCs. Therefore, more advanced culture techniques should be applied to expand ADSCs from diabetic patients to achieve expected clinical outcomes.  


2006 ◽  
Vol 18 (2) ◽  
pp. 209
Author(s):  
M. Mello ◽  
A. Lima ◽  
S. Malusky ◽  
S. Lane ◽  
M. Wheeler

The purpose of this study was to investigate the possible effects of the fluorescent dye PKH26 and flow cytometry on adult porcine adipose-derived stem cells (ADSCs) after exposing them to adipogenic and osteogenic differentiation conditions. Adipose tissue was isolated from swine (11 months of age) and digested with 0.075% collagenase at 37�C for 90 min. The digested adipose tissue was centrifuged at 200g for 10 min to obtain a cell pellet. The pellet was re-suspended with DMEM, and the ADSCs were plated onto 75 cm2 flasks (5000-10 000 cells per cm2) and cultured in DMEM supplemented with 10% fetal bovine serum (FBS) and 1% gentamicin. Passage 3 cells were labeled with fluorescent dye (PKH26 red fluorescent cell linker kit; Sigma Chemical, St. Louis, MO, USA) and sorted by flow cytometry. After labeling and sorting, the sorted and unsorted (control group) cells were replated and exposed to adipogenic (1 �M dexamethasone, 0.5 mM isobutylmethylxantine, 10 �M insulin and 200�M indomethacin) and osteogenic (0.1 �M dexamethasone, 10 mM �-glycerophosphate, and 50�M ascorbic acid) differentiation conditions when the cells were 90% confluent. Cells were evaluated based on morphology and specific staining properties. Adipogenic differentiation was confirmed by oil red O-positive staining of large lipid vacuoles, and osteogenic differentiation by Von Kossa staining 2 weeks after initiation of differentiation. The frequency of oil red O-positive colonies in both sorted and unsorted group was similar (15.0% vs. 13.2%, respectively). The number of osteogenic nodules, confirmed by the presence of calcium by Von Kossa staining, in the sorted and unsorted group was 17 and 184 per flask, respectively. In conclusion, this study demonstrates that adult porcine adipose-derived stem cells maintain their differentiation potential after labeling with fluorescent dye and sorting by flow cytometry. This should allow for more rapid evaluation of the differentiation potential of ADSCs in vitro. This work was partially supported by the Council for Food and Agricultural Research (C-FAR) Sentinel Program, University of Illinois and CNPq, Brazil (M. Mello).


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Camila Marx ◽  
Maiele Dornelles Silveira ◽  
Isabel Selbach ◽  
Ariel Silveira da Silva ◽  
Luisa Maria Gomes de Macedo Braga ◽  
...  

Stem cells isolated from adipose tissue show great therapeutic potential in veterinary medicine, but some points such as the use of fresh or cultured cells and route of administration need better knowledge. This study aimed to evaluate the effect of autologous stromal vascular fraction (SVF,n=4) or allogeneic cultured adipose-derived stem cells (ASCs,n=5) injected into acupuncture points in dogs with hip dysplasia and weak response to drug therapy. Canine ASCs have proliferation and differentiation potential similar to ASCs from other species. After the first week of treatment, clinical evaluation showed marked improvement compared with baseline results in all patients treated with autologous SVF and three of the dogs treated with allogeneic ASCs. On days 15 and 30, all dogs showed improvement in range of motion, lameness at trot, and pain on manipulation of the joints, except for one ASC-treated patient. Positive results were more clearly seen in the SVF-treated group. These results show that autologous SVF or allogeneic ASCs can be safely used in acupoint injection for treating hip dysplasia in dogs and represent an important therapeutic alternative for this type of pathology. Further studies are necessary to assess a possible advantage of SVF cells in treating joint diseases.


Sign in / Sign up

Export Citation Format

Share Document