scholarly journals The Cell Wall Hydrolytic NlpC/P60 Endopeptidases in Mycobacterial Cytokinesis: A Structural Perspective

Cells ◽  
2019 ◽  
Vol 8 (6) ◽  
pp. 609 ◽  
Author(s):  
Flavia Squeglia ◽  
Miguel Moreira ◽  
Alessia Ruggiero ◽  
Rita Berisio

In preparation for division, bacteria replicate their DNA and segregate the newly formed chromosomes. A division septum then assembles between the chromosomes, and the mother cell splits into two identical daughters due to septum degradation. A major constituent of bacterial septa and of the whole cell wall is peptidoglycan (PGN), an essential cell wall polymer, formed by glycan chains of β−(1-4)-linked-N-acetylglucosamine (GlcNAc) and N-acetylmuramic acid (MurNAc), cross-linked by short peptide stems. Depending on the amino acid located at the third position of the peptide stem, PGN is classified as either Lys-type or meso-diaminopimelic acid (DAP)-type. Hydrolytic enzymes play a crucial role in the degradation of bacterial septa to split the cell wall material shared by adjacent daughter cells to promote their separation. In mycobacteria, a key PGN hydrolase, belonging to the NlpC/P60 endopeptidase family and denoted as RipA, is responsible for the degradation of septa, as the deletion of the gene encoding for this enzyme generates abnormal bacteria with multiple septa. This review provides an update of structural and functional data highlighting the central role of RipA in mycobacterial cytokinesis and the fine regulation of its catalytic activity, which involves multiple molecular partners.

2018 ◽  
Vol 200 (20) ◽  
Author(s):  
Lizah T. van der Aart ◽  
Gerwin K. Spijksma ◽  
Amy Harms ◽  
Waldemar Vollmer ◽  
Thomas Hankemeier ◽  
...  

ABSTRACTThe bacterial cell wall maintains cell shape and protects against bursting by turgor. A major constituent of the cell wall is peptidoglycan (PG), which is continuously modified to enable cell growth and differentiation through the concerted activity of biosynthetic and hydrolytic enzymes. Streptomycetes are Gram-positive bacteria with a complex multicellular life style alternating between mycelial growth and the formation of reproductive spores. This involves cell wall remodeling at apical sites of the hyphae during cell elongation and autolytic degradation of the vegetative mycelium during the onset of development and antibiotic production. Here, we show that there are distinct differences in the cross-linking and maturation of the PGs between exponentially growing vegetative hyphae and the aerial hyphae that undergo sporulation. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis identified over 80 different muropeptides, revealing that major PG hydrolysis takes place over the course of mycelial growth. Half of the dimers lacked one of the disaccharide units in transition-phase cells, most likely due to autolytic activity. The deacetylation of MurNAc to MurN was particularly pronounced in spores and strongly reduced in sporulation mutants with a deletion ofbldDorwhiG, suggesting that MurN is developmentally regulated. Altogether, our work highlights the dynamic and growth phase-dependent changes in the composition of the PG inStreptomyces.IMPORTANCEStreptomycetes are bacteria with a complex lifestyle and are model organisms for bacterial multicellularity. From a single spore, a large multigenomic multicellular mycelium is formed, which differentiates to form spores. Programmed cell death is an important event during the onset of morphological differentiation. In this work, we provide new insights into the changes in the peptidoglycan composition and over time, highlighting changes over the course of development and between growing mycelia and spores. This revealed dynamic changes in the peptidoglycan when the mycelia aged, with extensive peptidoglycan hydrolysis and, in particular, an increase in the proportion of 3-3 cross-links. Additionally, we identified a muropeptide that accumulates predominantly in the spores and may provide clues toward spore development.


1975 ◽  
Vol 53 (5) ◽  
pp. 439-451 ◽  
Author(s):  
Larry R. Hoffman ◽  
Cecilia S. Hofmann

Quadriflagellate zoospores and conditions for their induction are described for an algal isolate tentatively identified as Cylindrocapsa geminella Wolle. Previous to this report, only biflagellate zoospores were known for Cylindrocapsa while quadriflagellate zoospores were thought to characterize the closely related Cylindrocapsopsis; this distinction is no longer valid. In our isolate, a vegetative cell may differentiate directly into a single zoospore or, more commonly, zoosporogenesis is preceded by division of a vegetative cell into two, four, or eight daughter cells, each of which becomes a zoospore. Variation in zoospore arrangement depends on the number and nature of the division sequences. Ultimately, zoospores are released from the more-or-less dissociated parental cell wall in one or more vesicles. Each primary vesicle contains one, two, four, or occasionally eight zoospores; zoospore release follows the gradual distention and dissolution of the enclosing vesicle. Light microscopic observations suggest that the zoospore-containing vesicles arise from altered cell wall material. Zoospore germlings and variations in the appearance of vegetative filaments are aiso described and attention is called to the nature of the cell wall, which is quite unlike that of most other filamentous green algae.


2005 ◽  
Vol 18 (11) ◽  
pp. 1140-1147 ◽  
Author(s):  
Zaira Caracuel ◽  
Ana Lilia Martínez-Rocha ◽  
Antonio Di Pietro ◽  
Marta P. Madrid ◽  
M. Isabel G. Roncero

Glycosylphosphatidylinositol-anchored (β)-1,3-glucanosyltransferases play active roles in fungal cell wall biosynthesis and morphogenesis and have been implicated in virulence on mammals. The role of β-1,3-glucanosyltransferases in pathogenesis to plants has not been explored so far. Here, we report the cloning and mutational analysis of the gas1 gene encoding a putative β-1,3-glucanosyltransferase from the vascular wilt fungus Fusarium oxysporum. In contrast to Candida albicans, expression of gas1 in F. oxysporum was independent of ambient pH and of the pH response transcription factor PacC. Gene knockout mutants lacking a functional gas1 allele grew in a way similar to the wild-type strain in submerged culture but exhibited restricted colony growth on solid substrates. The restricted growth phenotype was relieved by the osmotic stabilizer sorbitol, indicating that it may be related to structural alterations in the cell wall. Consistent with this hypothesis, Δgas1 mutants exhibited enhanced resistance to cell wall-degrading enzymes and increased transcript levels of chsV and rho1, encoding a class V chitin synthase and a small monomeric G protein, respectively. The Δgas1 mutants showed dramatically reduced virulence on tomato, both in a root infection assay and in a fruit tissue-invasion model, thus providing the first evidence for an essential role of fungal β-1,3-glucanosyltransferases during plant infection.


HortScience ◽  
2005 ◽  
Vol 40 (4) ◽  
pp. 1092B-1092 ◽  
Author(s):  
Megumi Ishimaru ◽  
David L. Smith ◽  
Kenneth C. Gross

Fruit softening occurs by several mechanisms, including modifications of cell wall structure by wall degrading enzymes. The most prominent change in tomato fruit pericarp wall composition is the loss of galactosyl residues throughout development and especially during ripening. In order to understand the role of galactosyl turnover in fruit softening, we successfully produced three recombinant tomato β-galactosidase/exo-galactanase (TBG) fusion proteins in yeast. TBG1, 4 and 5 enzyme properties and substrate specificities were assessed. Optimum pH of TBG1, 4 and 5 was 5.0, 4.0, and 4.5 and optimum temperature was 40∼50, 40, and 40 °C, respectively. The K ms for TBG1, 4 and 5 were 7.99, 0.09, and 2.42 mm, respectively, using p-nitrophenyl-β-D-galactopyranoside as substrate. Using synthetic and plant-derived substrates, TBG1 and 5 released galactosyl residues from 1 → 4 linkages. TBG4 released galactosyl residues from a wide range of plant-derived oligosaccharides and polysaccharides. Using tomato fruit cell wall material, TBG1, TBG4 and TBG5 released galactosyl residues from a variety of fruit stages and cell wall fractions. TBG4 released the most galactosyl residues from the ASP fraction and especially the ASP fraction from fruit at the turning stage. Interestingly, even though walls from Turning fruit stage contain less total galactosyl residues than at the Mature Green stage, TBG4 released 3–4 fold more galactose from the CSP and ASP fractions from Turning fruit. These results suggest that changes in structure of wall pectic polysaccharides leading up to the Turning stage may cause the wall to become more susceptible to hydrolysis by the TBG4 product.


Author(s):  
Hilton H. Mollenhauer

Cell walls are fundamentally involved in many aspects of plant biology including the morphology, growth, and development of plant cells and the interactions between plant hosts and their pathogens. Intuitively, one can recognize that these wall properties result from the sum total of the various components of which the wall is composed and that there are classes of substances each of which impart a characteristic property to the cell wall.


Plants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2308
Author(s):  
Bojana Živanović ◽  
Sonja Milić Komić ◽  
Nenad Nikolić ◽  
Dragosav Mutavdžić ◽  
Tatjana Srećković ◽  
...  

Two tomato genotypes with constitutively different ABA level, flacca mutant and wild type of Ailsa Craig cv. (WT), were subjected to three repeated drought cycles, with the aim to reveal the role of the abscisic acid (ABA) threshold in developing drought tolerance. Differential responses to drought of two genotypes were obtained: more pronounced stomatal closure, ABA biosynthesis and proline accumulation in WT compared to the mutant were compensated by dry weight accumulation accompanied by transient redox disbalance in flacca. Fourier-transform infrared (FTIR) spectra analysis of isolated cell wall material and morphological parameter measurements on tomato leaves indicated changes in dry weight accumulation and carbon re-allocation to cell wall constituents in flacca, but not in WT. A higher proportion of cellulose, pectin and lignin in isolated cell walls from flacca leaves further increased with repeated drought cycles. Different ABA-dependent stomatal closure between drought cycles implies that acquisition of stomatal sensitivity may be a part of stress memory mechanism developed under given conditions. The regulatory role of ABA in the cell wall restructuring and growth regulation under low leaf potential was discussed with emphasis on the beneficial effects of drought priming in developing differential defense strategies against drought.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Alexandra Byakova ◽  
Iegor Kartuzov ◽  
Svyatoslav Gnyloskurenko ◽  
Takashi Nakamura

The results of this study highlight the role of foaming agent and processing route in influencing the contamination of cell wall material by side products, which, in turn, affects the macroscopic mechanical response of closed-cell Al-foams. Several kinds of Al-foams have been produced with pure Al/Al-alloys by the Alporas like melt process, all performed with and without Ca additive and processed either with conventional TiH2foaming agent or CaCO3as an alternative one. Damage behavior of contaminations was believed to affect the micromechanism of foam deformation, favoring either plastic buckling or brittle failure of cell walls. No discrepancy between experimental values of compressive strengths for Al-foams comprising ductile cell wall constituents and those prescribed by theoretical models for closed-cell structure was found while the presence of low ductile and/or brittle eutectic domains and contaminations including particles/layers of Al3Ti, residues of partially reacted TiH2, and Ca bearing compounds, results in reducing the compressive strength to values close to or even below those of open-cell foams of the same relative density.


Foods ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1064
Author(s):  
Jelle Van Audenhove ◽  
Tom Bernaerts ◽  
Victor De Smet ◽  
Sophie Delbaere ◽  
Ann M. Van Loey ◽  
...  

In literature, different pectin extraction methods exist. In this study, two approaches starting from the alcohol-insoluble residue (AIR) of processing tomato are performed in a parallel way to facilitate the comparison of pectin yield and the compositional and structural properties of the extracted pectin and residual cell wall material obtained. On the one hand, pectin is extracted stepwise using hot water, chelating agents and low-alkaline conditions targeting fractionation of the pectin population. On the other hand, an industrially relevant single-step nitric acid pectin extraction (pH 1.6) is performed. In addition to these conventional solvent pectin extractions, the role of high-pressure homogenization (HPH) as a physically disruptive treatment to facilitate further pectin extraction from the partially pectin-depleted fraction obtained after acid extraction is addressed. The impact of HPH on the pectin cell wall polysaccharide interactions was shown as almost two thirds of the residual pectin were extractable during the subsequent extractions. For both extraction approaches, pectin obtained further in the sequence was characterized by a higher molecular mass and a higher amount of rhamnogalacturonan I domains. The estimated hemicellulose and cellulose content increased from 56 mol% for the AIR to almost 90 mol% for the final unextractable fractions of both methods.


2018 ◽  
Author(s):  
Lizah T. van der Aart ◽  
Gerwin K. Spijksma ◽  
Amy Harms ◽  
Waldemar Vollmer ◽  
Thomas Hankemeier ◽  
...  

ABSTRACTThe bacterial cell wall maintains cell shape and protects against bursting by the turgor. A major constituent of the cell wall is peptidoglycan (PG), which is continuously modified to allow cell growth and differentiation through the concerted activity of biosynthetic and hydrolytic enzymes. Streptomycetes are Gram-positive bacteria with a complex multicellular life style alternating between mycelial growth and the formation of reproductive spores. This involves cell-wall remodeling at apical sites of the hyphae during cell elongation and autolytic degradation of the vegetative mycelium during the onset of development and antibiotic production. Here, we show that there are distinct differences in the cross-linking and maturation of the PG between exponentially growing vegetative hyphae and the aerial hyphae that undergo sporulation. LC-MS/MS analysis identified over 80 different muropeptides, revealing that major PG hydrolysis takes place over the course of mycelial growth. Half of the dimers lack one of the disaccharide units in transition-phase cells, most likely due to autolytic activity. De-acetylation of MurNAc to MurN was particularly pronounced in spores, suggesting that MurN plays a role in spore development. Taken together, our work highlights dynamic and growth phase-dependent construction and remodeling of PG inStreptomyces.IMPORTANCEStreptomycetes are bacteria with a complex lifestyle, which are model organisms for bacterial multicellularity. From a single spore a large multigenomic, multicellular mycelium is formed, which differentiates to form spores. Programmed cell death is an important event during the onset of morphological differentiation. In this work we provide new insights into the changes in the peptidoglycan architecture over time, highlighting changes over the course of development and between growing mycelia and spores. This revealed dynamic changes in the peptidoglycan when the mycelia age, showing extensive PG hydrolysis and in particular an increase in the proportion of 3-3-cross-links. Additionally, we identified a muropeptide that is highly abundant specifically in spores, which may relate to dormancy and germination.


Sign in / Sign up

Export Citation Format

Share Document