scholarly journals Elastic and Dielectric Evaluation of the Piezoelectric Response of Ferroelectrics Using Unpoled Ceramics

Ceramics ◽  
2018 ◽  
Vol 1 (2) ◽  
pp. 211-228 ◽  
Author(s):  
Francesco Cordero

The evaluation of the piezoelectric properties of ferroelectric ceramics generally has a high level of uncertainty, due to incomplete poling, porosity, domain wall clamping and other effects. In addition, the poling process is often difficult and dangerous, due to the risk of breaking or damaging the sample. A method is described for the evaluation of the potential intrinsic piezoelectric response that a ceramic would have after full poling, without poling it. The method relies on the fact that any material undergoes an elastic softening below the ferroelectric transition temperature, whose magnitude can be expressed in terms of the intrinsic piezoelectric and dielectric coefficients of the material. Such a softening is equivalent to an electromechanical coupling factor averaged over all the components, due to the unpoled state of the sample, and can be deduced from a single temperature scan of an elastic modulus of a ceramic sample, spanning the ferroelectric and paraelectric states. The strengths, limits and possible applications of the method are discussed.

Author(s):  
Francesco Cordero

The evaluation of the piezoelectric properties of ferroelectric ceramics generally has a high level of uncertainty, due to incomplete poling, porosity, domain wall clamping and other effects. In addition, the poling process is often difficult and dangerous, due to the risk of breaking or damaging the sample. A method is described for the evaluation of the potential intrinsic piezoelectric response that a ceramic would have after full poling, without poling it. The method relies on the fact that any material undergoes an elastic softening below the ferroelectric transition temperature, whose magnitude can be expressed in terms of the intrinsic piezoelectric and dielectric coefficients of the material. Such a softening is equivalent to an electromechanical coupling, averaged over all the components due to the unpoled state of the sample, and can be deduced from a single temperature scan of an elastic modulus of a ceramic sample, spanning the ferroelectric and paraelectric states. The strengths, limits and possible applications of the method are discussed.


Author(s):  
Francesco Cordero

The evaluation of the piezoelectric properties of ferroelectric ceramics generally has a high level of uncertainty, due to incomplete poling, porosity, domain wall clamping and other effects. In addition, the poling process is often difficult and dangerous, due to the risk of breaking or damaging the sample. A method is described for the evaluation of the potential intrinsic piezoelectric response that a ceramic would have after full poling, without poling it. The method relies on the fact that any material undergoes an elastic softening below the ferroelectric transition temperature, whose magnitude can be expressed in terms of the intrinsic piezoelectric and dielectric coefficients of the material. Such a softening is equivalent to an electromechanical coupling, averaged over all the components due to the unpoled state of the sample, and can be deduced from a single temperature scan of an elastic modulus of a ceramic sample, spanning the ferroelectric and paraelectric states. The strengths, limits and possible applications of the method are discussed.


Materials ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2247 ◽  
Author(s):  
Jinhwan Kim ◽  
Sanghyun Yoon ◽  
Jae-Hoon Ji ◽  
Young-Ho Ko ◽  
Kyung-Ho Cho ◽  
...  

The pyrochlore phase in ferroelectric and piezoelectric materials is the main obstacle device application due to its poor electrical properties. Especially, the pyrochlore phase is frequently observed in the perovskite-based metal-oxide materials including piezoelectric and ferroelectric ceramics, which are based on solid-state reaction methods for fabrication. To overcome these problems, advanced innovative methods such as partial oxalate process will be investigated. In this method, crystalized magnesium niobite (MN) and lead titanate (PT) powders will be coated with a certain amount of lead oxalate and, then, the calcination process can be carried out to form the PMN-PT without pyrochlore phase. In this study, (1−x)PMN-xPT ceramics near the morphotropic phase boundary (MPB), with compositions of x = 0.25–0.40, have been prepared employing the partial oxalate method at various temperatures. The crystalline, microstructure, and piezoelectric properties of (1−x)PMN-xPT ceramics depending on the sintering temperature were intensively investigated and discussed. By optimizing the sintering temperature and compositions from the PMN-PT ceramics, the maximum value of the piezoelectric charge coefficient (d33) of 665pC/N, planar electromechanical coupling factor (kp) of 77.8%, dielectric constant (εr) of 3230, and remanent polarization (Pr) of 31.67 μC/cm2 were obtained.


2006 ◽  
Vol 301 ◽  
pp. 19-22 ◽  
Author(s):  
Takeru Yoshida ◽  
Hajime Nagata ◽  
Tadashi Takenaka

Doping a small quantity of additive Bi2O3 is effective in suppressing the deliquescence of KNbO3 ceramics. When an optimized ball-milling process was included, dense and nondeliquescent KNbO3 ceramics were obtained by a conventional firing process. However, the presence of Bi prevented grain growth (<0.2 μm) and it was one of the causes of low ferroelectricity. Moreover, the insufficient resistivity made the poling treatment difficult. In order to improve the electric properties, a small quantity of additive MnCO3 was also doped into KNbO3 with 0.5 mass% Bi2O3. Codoping of KNbO3 with MnCO3 and Bi2O3 (abbreviated to KNBixMny; x = 0~1.0, y = 0~1.0 in mass%) improved the ferroelectricity of samples, and it also had an effect on the resistivity and densification of sintered bodies. Well-saturated P-E hysteresis loops were observed with any amount of Mn and the largest remanent polarization Pr was about 16 μC/cm2. The piezoelectric properties of KNBi0.5Mn0.3, which had the highest piezoelectricity in this study, are an electromechanical coupling factor k33 and piezoelectric constant d33 of 0.30 and 101 pC/N, respectively.


2017 ◽  
Vol 732 ◽  
pp. 69-75
Author(s):  
Tai Kuang Lee ◽  
Jyun Hung Chen ◽  
Ying Chieh Lee

(Na0.5Bi0.5)0.94Ba0.06TiO3 (NBBT) ceramics doped with 0.1∼2.0 mol.% Ba (Zr0.05Ti0.95)O3 were investigated in terms of the sintering, microstructure, phase transition, and piezoelectric properties. BZT doping has no remarkable effect on the microstructure and densification within the studied doping content. Up to 2 mol.% BZT can dissolve into the lattice of NBBT ceramics, and the structure symmetry is not changed. However, a significant change in the piezoelectric properties took place. The piezoelectric coefficient d33 for the 0.1 wt.% BZT-doped NBBT ceramics sintered at 1150 °C was found to be 120 pC/N and the electromechanical coupling factor kp = 0.24.


2014 ◽  
Vol 887-888 ◽  
pp. 289-293
Author(s):  
Jing Chang Zhao ◽  
Zhen Lai Zhou

(Na,Bi)TiO3-BaTiO3lead free piezoelectric ceramics were fabricated with modification of CaCu3Ti4O12additives. The phase structure, morphology, dielectric and piezoelectric properties of prepared samples were investigated, respectively. It was found that CaCu3Ti4O12additives evidently improve the polarization properties of (Na,Bi)TiO3-BaTiO3lead free ceramics and the obtained samples exhibit an excellent piezoelectric properties (electromechanical coupling factorKp=31%, mechanical quality factorQm=151 and piezoelectric constantd33=160pC/N). According to results, the effect of CaCu3Ti4O12additives on electrical properties of (Na,Bi)TiO3-BaTiO3lead free piezoelectric ceramics is discussed.


2010 ◽  
Vol 03 (01) ◽  
pp. 35-39 ◽  
Author(s):  
CHEOL-WOO AHN ◽  
CHEE-SUNG PARK ◽  
SHASHANK PRIYA

We propose the design and synthesis of a polycrystalline sintered composite microstructure that leads to improved stability of piezoelectric response as a function of temperature in ( K , Na ) NbO 3 (KNN) based ceramics. The microstructure consists of matrix and island both of which have different composition and surface area. The matrix had much larger surface area and smaller orthorhombic to tetragonal transition temperature (T O-T ) than island. The composition corresponding to 0.99( K 0.48 Na 0.48 Li 0.04)( Nb 0.98 Sb 0.02) O 3-0.01 BaTiO 3 ( KNLNS-BT , T O-T ~ 33° C ) was selected as matrix while ( K 0.5 Na 0.5) NbO 3 ( KNN , T O-T ~ 206° C) was selected as island. The results show the flat electromechanical coupling factor from room temperature until ~ 300°C.


2021 ◽  
Vol 11 (1) ◽  
pp. 57-65
Author(s):  
Cong Luo ◽  
Tomoaki Karaki ◽  
Zhuangkai Wang ◽  
Yiqin Sun ◽  
Yohachi Yamashita ◽  
...  

AbstractAfter field cooling (FC) alternating current poling (ACP), we investigated the dielectric and piezoelectric properties of [001]pc-oriented 0.24Pb(In1/2Nb1/2)O3 (PIN)-0.46Pb(Mg1/3Nb2/3)O3 (PMN)-0.30PbTiO3 (PT) (PIMN-0.30PT) single crystals (SCs), which were manufactured by continuous-feeding Bridgman (CF BM) within morphotropic phase boundary (MPB) region. By ACP with 4 kVrms/cm from 100 to 70 °C, the PIMN-0.30PT SC attained high dielectric permittivity (ε33T/ε0) of 8330, piezoelectric coefficient (d33) of 2750 pC/N, bar mode electromechanical coupling factor k33 of 0.96 with higher phase change temperature (Tpc) of 103 °C, and high Curie temperature (TC) of 180 °C. These values are the highest ever reported as PIMN-xPT SC system with Tpc > 100 °C. The enhancement of these properties is attributed to the induced low symmetry multi-phase supported by phase analysis. This work indicates that FC ACP is a smart and promising method to enhance piezoelectric properties of relaxor-PT ferroelectric SCs including PIMN-xPT, and provides a route to a wide range of piezoelectric device applications.


2021 ◽  
Author(s):  
Cong Luo ◽  
Tomoaki Karaki ◽  
Zhuangkai Wang ◽  
Yiqin Sun ◽  
Yohachi Yamashita ◽  
...  

Abstract We investigated the dielectric and piezoelectric properties of [001]-oriented 0.24Pb(In1/2Nb1/2)O3-0.46Pb(Mg1/3Nb2/3)O3-0.30PbTiO3 (PIMN-0.30PT) single crystals (SCs) manufactured by continuous-feeding Bridgman (CF BM) within morphotropic phase boundary (MPB) region after field cooling alternating current poling (FC ACP). By optimized the FC ACP conditions of 4 kVrms/cm from 100 to 70 oC, the PIMN-0.30PT SC process attained ultrahigh dielectric permittivity (εT 33/ε0) of 8330 and piezoelectric coefficient (d33) of 2750 pC/N, and bar mode electromechanical coupling factor k33 of 0.96 with higher phase change temperature (Tpc) of 103 oC, respectively. These values are the highest ever reported as PIMN-xPT system SCs with Tpc > 100 oC. The enhancement of these properties of the PIMN-0.30PT SC is attributed to the induced low symmetry multi-phase supported by phase analysis. This work indicates that FC ACP is a smart and promising method to enhance piezoelectric properties of relaxor-PT ferroelectric SCs including PIMNT, which provide a route to a wide range of piezoelectric device applications.


2012 ◽  
Vol 512-515 ◽  
pp. 1355-1358 ◽  
Author(s):  
Tao Sun ◽  
Ye Jing Dai ◽  
Hong Qiang Wang

The introduction of lithium ion into BNT-BKT-BT ceramics with sol-gel method allows the development of high-performance lead-free piezoelectric ceramics. Nanoscale precursor powders were synthesized through calcination of amorphous gels, and densified ceramics with single perovskite structure were prepared at a relatively low sintering temperature 1110 °C. Crystal grain growth was fully developed with the Li+ addition through scanning electron microscope observation. Enhanced electrical properties, piezoelectric constant d33~184 pC/N and planar electromechanical coupling factor kp~0.30, were obtained for the ceramics.


Sign in / Sign up

Export Citation Format

Share Document