scholarly journals Multiscale Eulerian CFD of Chemical Processes: A Review

2020 ◽  
Vol 4 (2) ◽  
pp. 23 ◽  
Author(s):  
Son Ich Ngo ◽  
Young-Il Lim

This review covers the scope of multiscale computational fluid dynamics (CFD), laying the framework for studying hydrodynamics with and without chemical reactions in single and multiple phases regarded as continuum fluids. The molecular, coarse-grained particle, and meso-scale dynamics at the individual scale are excluded in this review. Scoping single-scale Eulerian CFD approaches, the necessity of multiscale CFD is highlighted. First, the Eulerian CFD theory, including the governing and turbulence equations, is described for single and multiple phases. The Reynolds-averaged Navier–Stokes (RANS)-based turbulence model such as the standard k-ε equation is briefly presented, which is commonly used for industrial flow conditions. Following the general CFD theories based on the first-principle laws, a multiscale CFD strategy interacting between micro- and macroscale domains is introduced. Next, the applications of single-scale CFD are presented for chemical and biological processes such as gas distributors, combustors, gas storage tanks, bioreactors, fuel cells, random- and structured-packing columns, gas-liquid bubble columns, and gas-solid and gas-liquid-solid fluidized beds. Several multiscale simulations coupled with Eulerian CFD are reported, focusing on the coupling strategy between two scales. Finally, challenges to multiscale CFD simulations are discussed. The need for experimental validation of CFD results is also presented to lay the groundwork for digital twins supported by CFD. This review culminates in conclusions and perspectives of multiscale CFD.

2018 ◽  
Author(s):  
R. J. Murphy ◽  
P. R. Buenzli ◽  
R. E. Baker ◽  
M. J. Simpson

AbstractMechanical heterogeneity in biological tissues, in particular stiffness, can be used to distinguish between healthy and diseased states. However, it is often difficult to explore relationships between cellular-level properties and tissue-level outcomes when biological experiments are performed at a single scale only. To overcome this difficulty we develop a multi-scale mathematical model which provides a clear framework to explore these connections across biological scales. Starting with an individual-based mechanical model of cell movement, we subsequently derive a novel coarse-grained system of partial differential equations governing the evolution of the cell density due to heterogeneous cellular properties. We demonstrate that solutions of the individual-based model converge to numerical solutions of the coarse-grained model, for both slowly-varying-in-space and rapidly-varying-in-space cellular properties. Applications of the model are discussed, including determining relative cellular-level properties and an interpretation of data from a breast cancer detection experiment.


Author(s):  
R. J. Murphy ◽  
P. R. Buenzli ◽  
R. E. Baker ◽  
M. J. Simpson

Mechanical heterogeneity in biological tissues, in particular stiffness, can be used to distinguish between healthy and diseased states. However, it is often difficult to explore relationships between cellular-level properties and tissue-level outcomes when biological experiments are performed at a single scale only. To overcome this difficulty, we develop a multi-scale mathematical model which provides a clear framework to explore these connections across biological scales. Starting with an individual-based mechanical model of cell movement, we subsequently derive a novel coarse-grained system of partial differential equations governing the evolution of the cell density due to heterogeneous cellular properties. We demonstrate that solutions of the individual-based model converge to numerical solutions of the coarse-grained model, for both slowly-varying-in-space and rapidly-varying-in-space cellular properties. We discuss applications of the model, such as determining relative cellular-level properties and an interpretation of data from a breast cancer detection experiment.


2021 ◽  
Vol 11 (4) ◽  
pp. 1399
Author(s):  
Jure Oder ◽  
Cédric Flageul ◽  
Iztok Tiselj

In this paper, we present uncertainties of statistical quantities of direct numerical simulations (DNS) with small numerical errors. The uncertainties are analysed for channel flow and a flow separation case in a confined backward facing step (BFS) geometry. The infinite channel flow case has two homogeneous directions and this is usually exploited to speed-up the convergence of the results. As we show, such a procedure reduces statistical uncertainties of the results by up to an order of magnitude. This effect is strongest in the near wall regions. In the case of flow over a confined BFS, there are no such directions and thus very long integration times are required. The individual statistical quantities converge with the square root of time integration so, in order to improve the uncertainty by a factor of two, the simulation has to be prolonged by a factor of four. We provide an estimator that can be used to evaluate a priori the DNS relative statistical uncertainties from results obtained with a Reynolds Averaged Navier Stokes simulation. In the DNS, the estimator can be used to predict the averaging time and with it the simulation time required to achieve a certain relative statistical uncertainty of results. For accurate evaluation of averages and their uncertainties, it is not required to use every time step of the DNS. We observe that statistical uncertainty of the results is uninfluenced by reducing the number of samples to the point where the period between two consecutive samples measured in Courant–Friedrichss–Levy (CFL) condition units is below one. Nevertheless, crossing this limit, the estimates of uncertainties start to exhibit significant growth.


2014 ◽  
Vol 493 ◽  
pp. 80-85 ◽  
Author(s):  
C.L Siow ◽  
Jaswar ◽  
Efi Afrizal

Computational Fluid Dynamics (CFD) software is often used to study fluid flow and structures motion in fluids. The CFD normally requires large size of arrays and computer memory and then caused long execution time. However, Innovation of computer hardware such as multi-cores processor provides an alternative solution to improve this programming performance. This paper discussed loop parallelize multi-cores processor for optimization of sequential looping CFD code. This loop parallelize CFD was achieved by applying multi-tasking or multi-threading code into the original CFD code which was developed by one of the authors. The CFD code was developed based on Reynolds Average Navier-Stokes (RANS) method. The new CFD code program was developed using Microsoft Visual Basic (VB) programming language. In the early stage, the whole CFD code was constructed in a sequential flow before it is modified to parallel flow by using VBs multi-threading library. In the comparison, fluid flow around the hull of round-shaped FPSO was selected to compare the performance of both the programming codes. Besides, executed results of this self-developed code such as pressure distribution around the hull were also presented in this paper.


Author(s):  
Xiaoxu Du ◽  
Huan Wang

The successful operation of an Autonomous Underwater Vehicle (AUV) requires the capability to return to a dock. A number of underwater docking technologies have been proposed and tested in the past. The docking allows the AUV to recharge its batteries, download data and upload new instructions, which is helpful to improve the working time and efficiency. During the underwater docking process, unsteady hydrodynamic interference occurs between the docking device and an AUV. To ensure a successful docking, it is very important that the underwater docking hydrodynamics of AUV is understood. In this paper, numerical simulations based on the computational fluid dynamics (CFD) solutions were carried out for a 1.85m long AUV with maximum 0.2 m in diameter during the docking process. The two-dimensional AUV model without fin and rudder was used in the simulation. The mathematical model based on the Reynolds-averaged Navier-Stokes (RANS) equations was established. The finite volume method (FVM) and the dynamic structured mesh technique were used. SIMPLE algorithm and the k-ε turbulence model in the Descartes coordinates were also adopted. The hydrodynamics characteristics of different docking states were analyzed, such as the different docking velocity, the docking device including baffle or not. The drag coefficients of AUV in the process of docking were computed for various docking conditions, i.e., the AUV moving into the docking in the speed of 1m/s, 2m/s, 5m/s. The results indicate that the drag coefficient increases slowly in the process of AUV getting close to the docking device. When the AUV moves into the docking device, the drag coefficient increases rapidly. Then the drag coefficient decreases rapidly. The drag coefficient decreases with the increase of velocity when AUV enters the docking device. It was also found that the drag coefficient can be effectively reduced by dislodging the baffle of docking device.


Author(s):  
D. Amirante ◽  
Z. Sun ◽  
J. W. Chew ◽  
N. J. Hills ◽  
N. R. Atkins

Reynolds-Averaged Navier-Stokes (RANS) computations have been conducted to investigate the flow and heat transfer between two co-rotating discs with an axial throughflow of cooling air and a radial bleed introduced from the shroud. The computational fluid dynamics (CFD) models have been coupled with a thermal model of the test rig, and the predicted metal temperature compared with the thermocouple data. CFD solutions are shown to vary from a buoyancy driven regime to a forced convection regime, depending on the radial inflow rate prescribed at the shroud. At a high radial inflow rate, the computations show an excellent agreement with the measured temperatures through a transient rig condition. At a low radial inflow rate, the cavity flow is destabilized by the thermal stratification. Good qualitative agreement with the measurements is shown, although a significant over-prediction of disc temperatures is observed. This is associated with under prediction of the penetration of the axial throughflow into the cavity. The mismatch could be the result of strong sensitivity to the prescribed inlet conditions, in addition to possible shortcomings in the turbulence modeling.


Author(s):  
Qiangqiang Huang ◽  
Xinqian Zheng ◽  
Aolin Wang

Air often flows into compressors with inlet prewhirl, because it will obtain a circumferential component of velocity via inlet distortion or swirl generators such as inlet guide vanes. A lot of research has shown that inlet prewhirl does influence the characteristics of components, but the change of the matching relation between the components caused by inlet prewhirl is still unclear. This paper investigates the influence of inlet prewhirl on the matching of the impeller and the diffuser and proposes a flow control method to cure mismatching. The approach combines steady three-dimensional Reynolds-averaged Navier-Stokes (RANS) simulations with theoretical analysis and modeling. The result shows that a compressor whose impeller and diffuser match well at zero prewhirl will go to mismatching at non-zero prewhirl. The diffuser throat gets too large to match the impeller at positive prewhirl and gets too small for matching at negative prewhirl. The choking mass flow of the impeller is more sensitive to inlet prewhirl than that of the diffuser, which is the main reason for the mismatching. To cure the mismatching via adjusting the diffuser vanes stagger angle, a one-dimensional method based on incidence matching has been proposed to yield a control schedule for adjusting the diffuser. The optimal stagger angle predicted by analytical method has good agreement with that predicted by computational fluid dynamics (CFD). The compressor is able to operate efficiently in a much broader flow range with the control schedule. The flow range, where the efficiency is above 80%, of the datum compressor and the compressor only employing inlet prewhirl and no control are just 25.3% and 31.8%, respectively. For the compressor following the control schedule, the flow range is improved up to 46.5%. This paper also provides the perspective of components matching to think about inlet distortion.


Author(s):  
Yogini Patel ◽  
Giteshkumar Patel ◽  
Teemu Turunen-Saaresti

The aim of the paper is to analyse the effect of turbulence and real gas models on the process of spontaneous condensation in converging diverging (CD) nozzle by using commercial Computational Fluid Dynamics (CFD) code. The calculations were based on the 2-D compressible Navier-Stokes (NS) equations coupled with two-equation turbulence model, and the non-equilibrium spontaneous condensing steam flow was solved on the basis of the classical nucleation theory. The results were validated to the available experimental data.


1996 ◽  
Vol 118 (3) ◽  
pp. 529-535 ◽  
Author(s):  
P. W. Giel ◽  
J. R. Sirbaugh ◽  
I. Lopez ◽  
G. J. Van Fossen

Experimental measurements in the inlet of a transonic turbine blade cascade showed unacceptable pitchwise flow nonuniformity. A three-dimensional, Navier–Stokes computational fluid dynamics (CFD) analysis of the imbedded bellmouth inlet in the facility was performed to identify and eliminate the source of the flow nonuniformity. The blockage and acceleration effects of the blades were accounted for by specifying a periodic static pressure exit condition interpolated from a separate three-dimensional Navier–Stokes CFD solution of flow around a single blade in an infinite cascade. Calculations of the original inlet geometry showed total pressure loss regions consistent in strength and location to experimental measurements. The results indicate that the distortions were caused by a pair of streamwise vortices that originated as a result of the interaction of the flow with the imbedded bellmouth. Computations were performed for an inlet geometry that eliminated the imbedded bellmouth by bridging the region between it and the upstream wall. This analysis indicated that eliminating the imbedded bellmouth nozzle also eliminates the pair of vortices, resulting in a flow with much greater pitchwise uniformity. Measurements taken with an installed redesigned inlet verify that the flow nonuniformity has indeed been eliminated.


2014 ◽  
Vol 554 ◽  
pp. 696-700 ◽  
Author(s):  
Nur Farhana Mohamad Kasim ◽  
Sheikh Ahmad Zaki ◽  
Mohamed Sukri Mat Ali ◽  
Ahmad Faiz Mohammad ◽  
Azli Abd Razak

Wind-induced ventilation is widely acknowledged as one of the best approaches for inducing natural ventilation. Computational fluid dynamics (CFD) technique is gaining popularity among researchers as an alternative for experimental methods to investigate the behavior of wind-driven ventilation in building. In this present paper, Reynolds averaged Navier-Stokes equation (RANS) k-ε model approach is considered to simulate the airflow on a simplified cubic building with an opening on a single façade. Preliminary simulation using models from previous experiment indicates the reliability of OpenFOAM, the open source software that will be used in this study. The results obtained in this study will better define options for our future study which aims to explore how different buildings arrays modify the airflow inside and around a naturally ventilated building.


Sign in / Sign up

Export Citation Format

Share Document