scholarly journals SOI-Nanowire Biosensor for the Detection of Glioma-Associated miRNAs in Plasma

Chemosensors ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 95
Author(s):  
Kristina A. Malsagova ◽  
Tatyana O. Pleshakova ◽  
Rafael A. Galiullin ◽  
Andrey F. Kozlov ◽  
Tatyana S. Romanova ◽  
...  

Herein, we report the development of a highly sensitive nanotechnology-based system—silicon-on-insulator nanowire biosensor for the revelation of microRNAs (miRNAs), associated with the development of glioma in the human. In this system, a sensor chip, bearing an array of silicon nanowire structures, is employed. The sensor chip is fabricated using a top-down technology. In our experiments reported herein, we demonstrated the detection of DNA oligonucleotide (oDNA), which represents a synthetic analogue of microRNA-363 associated with the development of glioma. To provide biospecific detection of the target oligonucleotides, the surface of the nanowire structures is modified with oligonucleotide probes; the latter are complementary to the target ones. The concentration limit of the target oligonucleotide detection, attained using our nanowire biosensor, is at the level of DL~10−17 M. The revelation of the elevated level of glioma-associated miRNA in plasma is also demonstrated.

Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 4213
Author(s):  
Seong-Kun Cho ◽  
Won-Ju Cho

In this study, a highly sensitive and selective sodium ion sensor consisting of a dual-gate (DG) structured silicon nanowire (SiNW) field-effect transistor (FET) as the transducer and a sodium-selective membrane extended gate (EG) as the sensing unit was developed. The SiNW channel DG FET was fabricated through the dry etching of the silicon-on-insulator substrate by using electrospun polyvinylpyrrolidone nanofibers as a template for the SiNW pattern transfer. The selectivity and sensitivity of sodium to other ions were verified by constructing a sodium ion sensor, wherein the EG was electrically connected to the SiNW channel DG FET with a sodium-selective membrane. An extremely high sensitivity of 1464.66 mV/dec was obtained for a NaCl solution. The low sensitivities of the SiNW channel FET-based sodium ion sensor to CaCl2, KCl, and pH buffer solutions demonstrated its excellent selectivity. The reliability and stability of the sodium ion sensor were verified under non-ideal behaviors by analyzing the hysteresis and drift. Therefore, the SiNW channel DG FET-based sodium ion sensor, which comprises a sodium-selective membrane EG, can be applied to accurately detect sodium ions in the analyses of sweat or blood.


Biosensors ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 237
Author(s):  
Yuri D. Ivanov ◽  
Kristina A. Malsagova ◽  
Vladimir P. Popov ◽  
Tatyana O. Pleshakova ◽  
Andrey F. Kozlov ◽  
...  

Nanoribbon chips, based on “silicon-on-insulator” structures (SOI-NR chips), have been fabricated. These SOI-NR chips, whose surface was sensitized with covalently immobilized oligonucleotide molecular probes (oDNA probes), have been employed for the nanoribbon biosensor-based detection of a circular ribonucleic acid (circRNA) molecular marker of glioma in humans. The nucleotide sequence of the oDNA probes was complimentary to the sequence of the target oDNA. The latter represents a synthetic analogue of a glioma marker—NFIX circular RNA. In this way, the detection of target oDNA molecules in a pure buffer has been performed. The lowest concentration of the target biomolecules, detectable in our experiments, was of the order of ~10−17 M. The SOI-NR sensor chips proposed herein have allowed us to reveal an elevated level of the NFIX circular RNA in the blood of a glioma patient.


2018 ◽  
Vol 2018 ◽  
pp. 1-6 ◽  
Author(s):  
Yuri D. Ivanov ◽  
Kristina A. Malsagova ◽  
Tatyana O. Pleshakova ◽  
Rafael A. Galiullin ◽  
Andrey F. Kozlov ◽  
...  

The method for the detection of 2,4-dinitrophenol (DNP) in solution is proposed. This method employs the sensors based on silicon nanowire field-effect transistors with protective layers of high-k dielectrics, whose surface is functionalized with an amino silane. Direct highly sensitive detection of DNP has been demonstrated, and the lowest detectable concentration of DNP was determined to be 10−14 M. Silicon-on-insulator nanowire (SOI-NW) sensors can well be employed for the rapid detection of a wide range of toxic and explosive compounds by selection of sensor surface modification techniques.


Biosensors ◽  
2018 ◽  
Vol 8 (3) ◽  
pp. 72 ◽  
Author(s):  
Kristina Malsagova ◽  
Tatyana Pleshakova ◽  
Andrey Kozlov ◽  
Ivan Shumov ◽  
Mikhail Ilnitskii ◽  
...  

Application of micro-Raman spectroscopy for the monitoring of quality of high-k (h-k) dielectric protective layer deposition onto the surface of a nanowire (NW) chip has been demonstrated. A NW chip based on silicon-on-insulator (SOI) structures, protected with a layer of high-k dielectric ((h-k)-SOI-NW chip), has been employed for highly sensitive detection of microRNA (miRNA) associated with oncological diseases. The protective dielectric included a 2-nm-thick Al2O3 surface layer and a 8-nm-thick HfO2 layer, deposited onto a silicon SOI-NW chip. Such a chip had increased time stability upon operation in solution, as compared with an unprotected SOI-NW chip with native oxide. The (h-k)-SOI-NW biosensor has been employed for the detection of DNA oligonucleotide (oDNA), which is a synthetic analogue of miRNA-21 associated with oncological diseases. To provide biospecificity of the detection, the surface of (h-k)-SOI-NW chip was modified with oligonucleotide probe molecules (oDVA probes) complementary to the sequence of the target biomolecule. Concentration sensitivity of the (h-k)-SOI-NW biosensor at the level of DL~10−16 M has been demonstrated.


Micromachines ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 279
Author(s):  
Kentaro Noda ◽  
Jian Sun ◽  
Isao Shimoyama

A tensor sensor can be used to measure deformations in an object that are not visible to the naked eye by detecting the stress change inside the object. Such sensors have a wide range of application. For example, a tensor sensor can be used to predict fatigue in building materials by detecting the stress change inside the materials, thereby preventing accidents. In this case, a sensor of small size that can measure all nine components of the tensor is required. In this study, a tensor sensor consisting of highly sensitive piezoresistive beams and a cantilever to measure all of the tensor components was developed using MEMS processes. The designed sensor had dimensions of 2.0 mm by 2.0 mm by 0.3 mm (length by width by thickness). The sensor chip was embedded in a 15 mm3 cubic polydimethylsiloxane (PDMS) (polydimethylsiloxane) elastic body and then calibrated to verify the sensor response to the stress tensor. We demonstrated that 6-axis normal and shear Cauchy stresses with 5 kPa in magnitudes can be measured by using the fabricated sensor.


2021 ◽  
Vol 42 (4) ◽  
pp. 469-472
Author(s):  
Yingtao Yu ◽  
Si Chen ◽  
Qitao Hu ◽  
Paul Solomon ◽  
Zhen Zhang

2011 ◽  
Vol 47 (38) ◽  
pp. 10593 ◽  
Author(s):  
Girjesh Dubey ◽  
Federico Rosei ◽  
Gregory P. Lopinski

2014 ◽  
Vol 116 (7) ◽  
pp. 074513 ◽  
Author(s):  
V. Mikhelashvili ◽  
D. Cristea ◽  
B. Meyler ◽  
S. Yofis ◽  
Y. Shneider ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document