scholarly journals A One-Step Method for Fabrication of Wear-Resistant Amphiphobic Microdimple Arrays Using Under-Liquid Laser Machining

Coatings ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 559 ◽  
Author(s):  
Pengcheng Sun ◽  
Xiuqing Hao ◽  
Sinong Xiao ◽  
Yusheng Niu ◽  
Liang Li ◽  
...  

A one-step method using under-liquid laser machining (ULLM) is proposed for fabrication of microdimples on a cemented carbide surface with a wear-resistant amphiphobic property. The influence of laser processing parameters on the depth, width, and surface roughness (Ra) of the microstructures were investigated through single-factor experiments. On the basis of single-factor experiments, multiobjective optimization was carried out so that a desired surface morphology can be achieved. The model describing the relationships between laser processing parameters and corresponding responses was developed based on response surface methodology (RSM), and the adequacy of the model was assessed by analysis of variance (ANOVA) and verified experimentally. Subsequently, the desired microstructure arrays were then fabricated with the optimal processing parameters. Finally, the wear-resistant behaviors were comparatively studied for two kinds of amphiphobic surfaces by rubbing multiple times using 1000 grit metallographic sandpaper. The textured surface fabricated using the ULLM method exhibits excellent mechanical rubbing resistance as it maintains its amphiphobic character even after rubbing 300 m under the pressure of 2.4 MPa. This facile and low-cost method can be not only easily extended to other materials but also applied to fabricate amphiphobic surfaces with wear-resistance and self-healing properties.

Coatings ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 369
Author(s):  
Annalisa Volpe ◽  
Sara Covella ◽  
Caterina Gaudiuso ◽  
Antonio Ancona

Changing the wetting properties of surfaces is attracting great interest in many fields, in particular to achieve a surface with a superhydrophobic behavior. Laser machining is an emerging technique to functionalize materials with high precision and flexibility without any chemical treatment. However, when it is necessary to treat large area surfaces laser-based methods are still too slow to be exploited in industrial productions. In this work, we show that by improving the laser texture strategy it is possible to reduce the laser processing time to produce superhydrophobic aluminum alloy surfaces. Three different surface texture geometries were micromachined; namely, square, circular and triangular lattice grooves. We found that if the spacing between the grooves is narrow, i.e., when the percentage of the textured surface is high, the volume of air trapped inside the micromachined structures plays an important role in the wetting behavior. Meanwhile, when the groove spacing approaches the droplet dimensions, the texture geometry has a preponderant influence. Based on these findings an appropriate choice of the laser texture strategy allowed the fabrication of superhydrophobic aluminum alloy surfaces with a 10% reduction of processing time.


1993 ◽  
Vol 58 (11) ◽  
pp. 2642-2650 ◽  
Author(s):  
Zdeněk Kruliš ◽  
Ivan Fortelný ◽  
Josef Kovář

The effect of dynamic curing of PP/EPDM blends with sulfur and thiuram disulfide systems on their mechanical properties was studied. The results were interpreted using the knowledge of the formation of phase structure in the blends during their melt mixing. It was shown, that a sufficiently slow curing reaction is necessary if a high impact strength is to be obtained. Only in such case, a fine and homogeneous dispersion of elastomer can be formed, which is the necessary condition for high impact strength of the blend. Using an inhibitor of curing in the system and a one-step method of dynamic curing leads to an increase in impact strength of blends. From the comparison of shear modulus and impact strength values, it follows that, at the stiffness, the dynamically cured blends have higher impact strength than the uncured ones.


2019 ◽  
Vol 375 ◽  
pp. 122000 ◽  
Author(s):  
Yang Xuan ◽  
Xian-Lin Song ◽  
Xiao-Quan Yang ◽  
Ruo-Yun Zhang ◽  
Zi-Yu Song ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3138
Author(s):  
Kamila Gosz ◽  
Agnieszka Tercjak ◽  
Adam Olszewski ◽  
Józef Haponiuk ◽  
Łukasz Piszczyk

The utilization of forestry waste resources in the production of polyurethane resins is a promising green alternative to the use of unsustainable resources. Liquefaction of wood-based biomass gives polyols with properties depending on the reagents used. In this article, the liquefaction of forestry wastes, including sawdust, in solvents such as glycerol and polyethylene glycol was investigated. The liquefaction process was carried out at temperatures of 120, 150, and 170 °C. The resulting bio-polyols were analyzed for process efficiency, hydroxyl number, water content, viscosity, and structural features using the Fourier transform infrared spectroscopy (FTIR). The optimum liquefaction temperature was 150 °C and the time of 6 h. Comprehensive analysis of polyol properties shows high biomass conversion and hydroxyl number in the range of 238–815 mg KOH/g. This may indicate that bio-polyols may be used as a potential substitute for petrochemical polyols. During polyurethane synthesis, materials with more than 80 wt% of bio-polyol were obtained. The materials were obtained by a one-step method by hot-pressing for 15 min at 100 °C and a pressure of 5 MPa with an NCO:OH ratio of 1:1 and 1.2:1. Dynamical-mechanical analysis (DMA) showed a high modulus of elasticity in the range of 62–839 MPa which depends on the reaction conditions.


2021 ◽  
pp. 51227
Author(s):  
Xiaoying Sun ◽  
Jing Liu ◽  
Zhihui Zhang ◽  
Yuanyuan Zhi ◽  
Lujiang Jin ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2621
Author(s):  
Aneta Bartkowska

The paper presents the results of a study of the microstructure, chemical composition, microhardness and corrosion resistance of Cr-B coatings produced on Vanadis 6 tool steel. In this study, chromium and boron were added to the steel surface using a laser alloying process. The main purpose of the study was to determine the impact of those chemical elements on surface properties. Chromium and boron as well as their mixtures were prepared in various proportions and then were applied on steel substrate in the form of precoat of 100 µm thickness. Depending on the type of precoat used and laser processing parameters, changes in microstructure and properties were observed. Coatings produced using precoat containing chromium and boron mixture were characterized by high microhardness (900 HV0.05–1300 HV0.005) while maintaining good corrosion resistance. It was also found that too low laser beam power contributed to the formation of cracks and porosity.


2013 ◽  
Vol 321-324 ◽  
pp. 209-212
Author(s):  
Chun Yan Xia

nfluences on properties of the concrete highway pavement were analyzed in this paper, and the optimal formulation materials were gotten to use in the repair of used-broken cement blocks in the experiment. Polyurethane concrete material was prepared, combing the ordinary concrete technology with one-step method of the synthesis of polyurethane hard bubble, and then its mechanical properties of the relevant parameters were measured to determine the optimal preparation program. The results show that the polyurethane concrete also has sufficiently good mechanical properties while it has the characteristic of fast patching.


2021 ◽  
Vol 409 ◽  
pp. 126876
Author(s):  
Zhi Chen ◽  
Zhaojun Yan ◽  
Hongbing Zhou ◽  
Fenglin Han ◽  
Linhe Zhao ◽  
...  

2002 ◽  
Vol 43 (21) ◽  
pp. 3887-3890 ◽  
Author(s):  
Michael R. Wood ◽  
June Y. Kim ◽  
Kathy M. Books

Sign in / Sign up

Export Citation Format

Share Document