scholarly journals Dual-Band Plasmonic Perfect Absorber Based on the Hybrid Halide Perovskite in the Communication Regime

Coatings ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 67
Author(s):  
Liang Xu ◽  
Jian Zeng ◽  
Xin Luo ◽  
Libin Xia ◽  
Zongle Ma ◽  
...  

Due to the weak absorption of (CH3NH3)PbI3 in the communication regime, which restricts its optoelectronic applications, we design a adjustable dual-band perfect absorber based on the (CH3NH3)PbI3 to significantly enhance its absorption capability. Since the localized plasmon (LP) mode and surface plasmon (SP) mode are excited in the structure, which can both greatly enhance light absorption of the (CH3NH3)PbI3 layer, dual-band perfect absorption peaks are formed in the communication regime, and the absorption of (CH3NH3)PbI3 layer is increased to 43.1% and 64.2% at the dual-band absorption peaks by using finite-difference time-domain (FDTD) methods, respectively. By varying some key structural parameters, the dual-band absorption peaks of (CH3NH3)PbI3 can be separately shifted in a wide wavelength region. Moreover, the designed absorber can keep good performance under wide angles of incidence and manifested polarization correlation. Furthermore, not just for (CH3NH3)PbI3, the physical mechanism in this absorber can also be utilized to strengthen the absorption of other halide perovskites.

Materials ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 1954 ◽  
Author(s):  
Can Cao ◽  
Yongzhi Cheng

In this paper, a plasmonic perfect absorber (PPA) based on a silicon nanorod resonator (SNRR) for visible light is proposed and investigated numerically. The proposed PPA is only a two-layer nanostructure consisting of a SNRR periodic array and metal substrate. The perfect absorption mainly originates from excitation of the localized surface plasmon resonance (LSPR) mode in the SNRR structure. The absorption properties of this design can be adjusted by varying the radius (r) and height (h) of the SNRR structure. What is more, the stronger quad-band absorption can be achieved by combing four different radius of the SNRR in one period as a super unit-cell. Numerical simulation indicates that the designed quad-band PPA can achieve the absorbance of 99.99%, 99.8%, 99.8%, and 92.2% at 433.5 THz, 456 THz, 482 THz, and 504.5 THz, respectively. Further simulations show that the proposed PPA is polarization-insensitive for both transverse electric (TE) and transverse magnetic (TM) modes. The proposed PPA can be a desirable candidate for some potential applications in detecting, sensing, and visible spectroscopy.


2021 ◽  
Vol 9 ◽  
Author(s):  
Xuehan Liu ◽  
Keyang Li ◽  
Zhao Meng ◽  
Zhun Zhang ◽  
Zhongchao Wei

A subwavelength metamaterial perfect absorber (MPA) in optical communication band was proposed and tested using the finite-difference time-domain method. The absorber is periodic and comprises a top layer of diamond silicon surrounded by L-shaped silicon and a gold layer on the substrate. It can achieve dual-band perfect absorption, and one of the peaks is in the optical communication band. By changing the gap (g) between two adjacent pieces of L-shaped silicon, and the thickness (h) of the silicon layer, the resonance wavelength of absorption peak can be tuned. When the incident electromagnetic wave entered the absorber, the metamaterial absorber could almost completely consume the incident electromagnetic waves, thereby achieving more than 99% perfect absorption. The absorption peak reaches 99.986% at 1310 nm and 99.421% at 1550 nm. Moreover, the MPA exposed to different ambient refraction indexes can be applied as plasma sensors, and can achieve multi-channel absorption with high figure of merit (FOM*) value and refractive index (RI) sensitivity. The FOM* values at 1310 nm and 1550 nm are 6615 and 168, respectively, and both resonance peaks have highly RI sensitivity. The results confirm that the MPA is a dual-band, polarization-independent, wide-angle absorber and insensitive to incident angle. Thence it can be applied in the fields of optical communication, used as a light-wave filter and plasma sensor, and so on.


2022 ◽  
Author(s):  
Wenhan Zhao ◽  
Junqiao Wang ◽  
Ran Li ◽  
Bin Zhang

Abstract In this paper, a dual-band metamaterial absorber (MMA) with wide-angle and high absorptivity is proposed. The MMA consists of two silver layers separated by a dielectric layer. Its top resonant element is constituted by two concentric ring resonators connected with four strips. Based on electromagnetic field simulation, the proposed MMA has two narrow absorption peaks with an absorption rate of 99.9% at 711 nm and 99.8% at 830 nm, and the corresponding line width of the two absorption peaks are only 9.7 nm and 9.8 nm. The dual-band MMA shows high absorptivity under wide incident angles. The simulated field pattern shows that dual-band perfect absorption is the combined result of the interaction of two concentric ring resonators and unit cell coupling. In addition, the hexapole plasmon mode can be observed at the outer ring at one absorption peak. The narrow plasmon resonance has a potential application in optical sensing, and can be used to measure the concentration of aqueous glucose with two frequency channels. The proposed MMA with high absorptivity is simple to manufacture, and has other potential applications, such as narrow-band filters, energy storage device, and so on.


Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1092
Author(s):  
Dewang Huo ◽  
Xinyan Ma ◽  
Hang Su ◽  
Chao Wang ◽  
Hua Zhao

In this paper, a thin metasurface perfect absorber based on refractory titanium nitride (TiN) is proposed. The size parameter of the metasurface is investigated based on the finite difference time domain method and transfer matrix method. With only a 15-nm-thick TiN layer inside the silica/TiN/silica stacks standing on the TiN substrate, the near-perfect absorption throughout the visible regime is realized. The cross-talk between the upper and lower dielectric layers enables the broadening of the absorption peak. After patterning the thin film into a nanodisk array, the resonances from the nanodisk array emerge to broaden the high absorption bandwidth. As a result, the proposed metasurface achieves perfect absorption in the waveband from 400 to 2000 nm with an average absorption of 95% and polarization-insensitivity under the normal incidence. The proposed metasurface maintains average absorbance of 90% up to 50-degree oblique incidence for unpolarized light. Our work shows promising potential in the application of solar energy harvesting and other applications requiring refractory metasurfaces.


Micromachines ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1552
Author(s):  
Bin Liu ◽  
Pinghui Wu ◽  
Hongyang Zhu ◽  
Li Lv

This paper proposes a perfect metamaterial absorber based on a dielectric−dielectric−metal structure, which realizes ultra-narrowband dual-band absorption in the near-infrared band. The maximum Q factor is 484. The physical mechanism that causes resonance is hybrid coupling between magnetic polaritons resonance and plasmon resonance. At the same time, the research results show that the intensity of magnetic polaritons resonance is much greater than the intensity of the plasmon resonance. By changing the structural parameters and the incident angle of the light source, it is proven that the absorber is tunable, and the working angle tolerance is 15°. In addition, the sensitivity and figure of merit when used as a refractive index sensor are also analyzed. This design provides a new idea for the design of high-Q optical devices, which can be applied to photon detection, spectral sensing, and other high-Q multispectral fields.


2021 ◽  
Author(s):  
Raj Kumar ◽  
Bipin K Singh ◽  
Rajesh K Tiwari ◽  
Praveen C Pandey

Abstract In this paper, we have presented a new design of a metamaterial perfect absorber (MPA) consisting of three layers of metal-dielectric-metal in which the top layer is considered of special kind square patches at different places in a unit cell. This MPA exhibits wideband, wide-angle, and polarization-independent absorption performance in the visible region. This structure originates the plasmonic resonance which is responsible for the perfect absorption in the optical region. Under a specific condition, this simulated absorber structure exhibits an extremely high broadband absorption between 591.54 nm to 704.40 nm wavelength range with near-unity absorption, and a single peak observed at 385.33 nm with absorption 94.16%. We extracted the impedance of the absorber and matched it with free space, and also demonstrated the effective permittivity and permeability. Moreover, the parametric study of the resonators, dielectric layer, and multi-band topology has also been investigated. The polarization-insensitive-based metamaterial may be utilized to improve the efficiency of different devices in the visible range. Furthermore, we have calculated the absorption of the proposed MPA under the solar radiation (AM1.5) for different structural parameters. The proposed absorber greatly enhances the conversion efficiency which is highly useful for solar cells. We also determined the short circuit current density of this absorber for different thicknesses of the GaAs layer. Al metal patches at meta-surface provide nearly similar performance in comparison with other costly metals. Therefore, the proposed structure with cheaper Al metal may be used for different devices as the perfect absorber.


Author(s):  
Yimin Xuan ◽  
Jinguo Huang ◽  
Qiang Li

A tunable metamaterial is proposed by combining a thermochromic oxide with a fishnet structure. The reflection and transmission coefficients are calculated by finite-difference time-domain (FDTD) method. Then the effective electromagnetic parameters of the metamaterial are retrieved on the basis of these data. The results reveal that an effective negative refractive index is obtained by this proposed structure. Furthermore, the wavelength region with negative refractive index can be self-regulated by simply tuning the temperature, which is of importance to extend the applications of negative refractive index materials. The effects of structural sizes on the negative refractive index are discussed in detail. The size-dependence indicates that wavelength region with negative refractive index can be designed to locate at the desired position by dexterously tailoring the structural parameters.


2019 ◽  
Vol 14 (1) ◽  
Author(s):  
Xin Luo ◽  
Zi-Qiang Cheng ◽  
Xiang Zhai ◽  
Zhi-Min Liu ◽  
Si-Qi Li ◽  
...  

Abstract A suspended monolayer graphene has only about 2.3% absorption rate in visible and infrared band, which limits its optoelectronic applications. To significantly increase graphene’s absorption efficiency, a tunable dual-band and polarization-insensitive coherent perfect absorber (CPA) is proposed in the mid-infrared regime, which contains the silicon array coupled in double-layers graphene waveguide. Based on the FDTD methods, dual-band perfect absorption peaks are achieved in 9611 nm and 9924 nm, respectively. Moreover, due to its center symmetric feature, the proposed absorber also demonstrates polarization-insensitive. Meanwhile, the coherent absorption peaks can be all-optically modulated by altering the relative phase between two reverse incident lights. Furthermore, by manipulating the Fermi energies of two graphene layers, two coherent absorption peaks can move over a wide spectrum range, and our designed CPA can also be changed from dual-band CPA to narrowband CPA. Thus, our results can find some potential applications in the field of developing nanophotonic devices with excellent performance working at the mid-infrared regime.


2018 ◽  
Vol 8 (9) ◽  
pp. 1445
Author(s):  
Chi-Young Hwang ◽  
Yong-Hae Kim ◽  
Ji Choi ◽  
Gi Kim ◽  
Jong-Heon Yang ◽  
...  

Optical absorbers have been a topic of intense research due to their importance in many applications. In particular, multi-band and perfect absorption features in a desired frequency range are essential in broadband applications. In this work, we numerically studied the absorption properties of subwavelength metallic gratings coated with a dielectric layer. Here, the structure is considered to be an integration between a resonant cavity and a subwavelength metallic grating. Two appropriately designed structures can exhibit multi-band absorption properties. In addition to the numerical simulation results, we elaborate on determining the appropriate structural parameters that yield the desired spectral absorption profile in the visible range. We also numerically identify critical coupling conditions for perfect absorption.


2018 ◽  
Vol 26 (9) ◽  
pp. 11658 ◽  
Author(s):  
Xin Luo ◽  
Xiang Zhai ◽  
Lingling Wang ◽  
Qi Lin

Sign in / Sign up

Export Citation Format

Share Document