scholarly journals Modifying Precursor Solutions to Obtain Screen-Printable Inks for Tungsten Oxides Electrochromic Film Preparation

Coatings ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 872
Author(s):  
Kaiyue Guo ◽  
Guanguang Zhang ◽  
Yujie Long ◽  
Honglong Ning ◽  
Zhuohui Xu ◽  
...  

Tungsten trioxide (WO3) is used to prepare the important electrochromic layer of the electrochromic device as a wide bandgap semiconductor material. In this study, WO3 electrochromic film was successfully prepared by screen printing. To modify the thixotropy and wettability of the ink, polyvinyl alcohol (PVA) and 2-perfluoroalkyl ethanol (FSO) were added in the ammonium meta-tungstate (AMT) solution. We found that the PVA additive could improve the dynamic viscosity of the solution and modify the uniformity of the film. 2-Perfluoroalkyl ethanol (FSO) could lower the surface tension and increase the wettability of the AMT solution on the substrate. By observing the morphology of the printed films, the ink formulas for screen printing were selected. We found the annealing process could help remove PVA. Through characterization of electrochromic performance, it was found that the best performing device had 42.57% modulation and 93.25 cm2·C−1 coloration efficiency (CE) for 600 nm light. This study showed great potential in the preparation of WO3 electrochromic devices by a low-cost screen-printing method.

2005 ◽  
Vol 900 ◽  
Author(s):  
Claudiu I. Muntele ◽  
Sergey Sarkisov ◽  
Iulia Muntele ◽  
Daryush Ila

ABSTRACTSilicon carbide is a promising wide-bandgap semiconductor intended for use in fabrication of high temperature, high power, and fast switching microelectronics components running without cooling. For hydrogen sensing applications, silicon carbide is generally used in conjunction with either palladium or platinum, both of them being good catalysts for hydrogen. Here we are reporting on the temperature-dependent surface morphology and depth profile modifications of Au, Ti, and W electrical contacts deposited on silicon carbide substrates implanted with 20 keV Pd ions.


Nanomaterials ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1920
Author(s):  
Badriyah Alhalaili ◽  
Ruxandra Vidu ◽  
Howard Mao ◽  
M. Saif Islam

Gallium oxide (Ga2O3) is a new wide bandgap semiconductor with remarkable properties that offers strong potential for applications in power electronics, optoelectronics, and devices for extreme conditions. In this work, we explore the morphology of Ga2O3 nanostructures on different substrates and temperatures. We used silver catalysts to enhance the growth of Ga2O3 nanowires on substrates such as p-Si substrate doped with boron, 250 nm SiO2 on n-Si, 250 nm Si3N4 on p-Si, quartz, and n-Si substrates by using a thermal oxidation technique at high temperatures (~1000 °C) in the presence of liquid silver paste that served as a catalyst layer. We present the results of the morphological, structural, and elemental characterization of the Ga2O3 nanostructures. This work offers in-depth explanation of the dense, thin, and long Ga2O3 nanowire growth directly on the surfaces of various types of substrates using silver catalysts.


2014 ◽  
Vol 62 (4) ◽  
pp. 759-763 ◽  
Author(s):  
S. Walczak ◽  
M. Sibiński

Abstract The paper presents a comparative analysis of two types of flexible temperature sensors, made of carbon-based nanostructures composites. These sensors were fabricated by a low-cost screen-printing method, which qualifies them to large scale, portable consumer electronic products. Results of examined measurements show the possibility of application for thick film devices, especially dedicated to wearable electronics, also known as a textronics. Apart from general characterisation, the influence of technological processes on specific sensor parameters were examined, particulary the value of the temperature coefficient of resistance (TCR) and its stability during the device bending.


2007 ◽  
Vol 124-126 ◽  
pp. 355-358
Author(s):  
Kwan Wuk Park ◽  
Jin Seok Lee ◽  
Hee Jin Lim ◽  
Sung Churl Choi

Bi-based glass pastes were prepared in the mixed organic solvents (α-terpineol and texanol) with different kinds and concentrations of organic dispersant such as fish oil , phosphate ester and poly methyl methacrylate (PMMA). The rheological stability of glass pastes was characterized by using a rheometer and adsorption behavior of organic additives for the glass powders was carried out by using a thermal gravimetric analyzer (TGA).The Bi-based glass pastes exhibited the most stable rheological behavior at an addition of phosphate ester of 0.5 in mass %, due to the steric repulsive force acting on the surface of glass powers with adsorbing the organic additives. This study allowed significant delay of the sedimentation time and suppressed generation of micropores during practical forming process by a screen printing method.


2006 ◽  
Vol 45 ◽  
pp. 200-204
Author(s):  
Dong Xiang Zhou ◽  
Huan Liu ◽  
Shu Ping Gong

Copper-doped tin oxide nanopowder has been synthesized via the hydrothermal route, in which pure metallic Sn, diluted nitric acid solution and Cu(NO3)2 are used as the starting materials. The hydrothermal treatment at about 200°C for 10 h results in rutile crystalline SnO2 particles with a narrow size distribution typically in the range of 3~6 nm. The average crystallite size of 5 wt% CuO-doped SnO2 particles remains smaller than 12.5 nm even after annealing at 800°C. The evaluation of the sensitive properties of the synthesized powder with various amount of CuO doping is conducted on the thick-film samples fabricated by screen-printing method. The high sensitivity toward H2S as shown by the sensor test results show the possibility of using this material for gas sensor fabrication.


2017 ◽  
Vol 6 (02) ◽  
pp. 73 ◽  
Author(s):  
Nadya Aruma Dewi ◽  
Fahru Nurosyid ◽  
Agus Supriyanto ◽  
Risa Suryana

<p align="center"> </p><p>Senditized Dye Solar Cells (DSSC) consist of photoelectrode, dye, electrolyte and counter electrode which is one of the photochemical electric cells. In this article will discuss the influence of the thickness of the electrode on the electrical properties. Electrodes made by screen printing method. Screen by type T-49. TiO<sub>2</sub> deposited on the FTO variation of the number of layers to obtain a thickness of 1, 2, 3 and 4. DSSC tested thickness by Screen Electron Microscopy (SEM), absorbance test by UV Visible Lambda 25 and characterization of current and voltage test by Keithley Measurenment 2602A. The test results showed the thickness of the TiO<sub>2</sub> electrode thickness (1.5 ± 0.2) μm, (2.9 ± 0.5) μm, (3.5 ± 0.6) μm, and (4.5 ± 0.8 ) μm. Based on the test results absorbance maximum value contained in thickness (4.5 ± 0.8) μm having a dye adsorbed at most and have the highest efficiency  2.41%.</p><p> </p>


2019 ◽  
Vol 39 (7) ◽  
pp. 636-641 ◽  
Author(s):  
Ismail Borazan ◽  
Yasin Altin ◽  
Ali Demir ◽  
Ayse Celik Bedeloglu

Abstract Polymer-based organic solar cells are of great interest as they can be produced with low-cost techniques and also have many interesting features such as flexibility, graded transparency, easy integration, and lightness. However, conventional wide bandgap polymers used for the light-absorbing layer significantly affect the power conversion efficiency of organic solar cells because they collect sunlight in a given spectrum range and due to their limited stability. Therefore, in this study, polymers with different bandgaps were used, which could allow for the production of more stable and efficient organic solar cells: P3HT as the wide bandgap polymer, and PTB7 and PCDTBT as low bandgap polymers. These polymers with different bandgaps were combined with PCBM to obtain increased efficiency and optimum photoactive layer in the organic solar cell. The obtained devices were characterized by measuring optical, photoelectrical, and morphological properties. Solar cells using the PTB7 and PCDTBT polymers had more rough surfaces than the reference cell using P3HT. The use of low-bandgap polymers improved Isc significantly, and when combined with P3HT, a higher Voc was obtained.


2020 ◽  
Vol 12 (38) ◽  
pp. 4649-4656
Author(s):  
Thinikan Thongkam ◽  
Ratana Rungsirisakun ◽  
Khuanjit Hemavibool

A convenient and low cost paper-based analytical device (PAD) was developed using an inexpensive UV resin with a screen-printing method for measuring ammonium in soil.


Sign in / Sign up

Export Citation Format

Share Document