scholarly journals Process Parameter Optimization and Characterization for an Edible Film: Flaxseed Concern

Coatings ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1106
Author(s):  
Sneh Punia Bangar ◽  
Ajay Singh ◽  
Monica Trif ◽  
Manoj Kumar ◽  
Pradyuman Kumar ◽  
...  

Consumer demands for biocompatible, minimally processed and eco-friendly foods have increased drastically and are currently trending. Polysaccharides derived from various plant seeds exhibiting structure conformational diversity are among such foods and used for the development of edible films. In this study, the physical properties of flaxseed, proximate characterization and rheological, mechanical and thermal features of flaxseed meal-based edible films were investigated. A development strategy worked through adding pectin + flaxseed meal to a plasticizer (glycerol) with a ratio of 7:3 w/v, whereas, in the control group, the flaxseed meal remained unaltered. The rheological results showed the non-Newtonian behavior of film-forming solutions and data were well fitted into the power law model. The developed film (flaxseed + pectin) was slightly brownish and exhibited a transparency of 17.78, which is clear enough to be used as see-through packaging material, whereas the control sample had a transparency of 38.25, indicating its fair transparency. The water vapor permeability of the test sample was also beneficial (0.992 g/cm2/24 h) and was competitively close to the control (0.981 g/cm2/24 h). The developed blended films were 98–99% soluble in water and acid, indicating their usefulness when applied as a coating. The mechanical properties, tensile strength and elongation value of the test sample were less than the control. This study will be helpful in the development of a novel biodegradable film for extending the life of different foods.

Coatings ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 602
Author(s):  
Carmen Rodica Pop ◽  
Teodora Emilia Coldea ◽  
Liana Claudia Salanţă ◽  
Alina Lăcrămioara Nistor ◽  
Andrei Borşa ◽  
...  

Kefiran is an exopolysaccharide classified as a heteropolysaccharide comprising glucose and galactose in equimolar quantities, and it is classified as a water-soluble glucogalactan. This work aimed to investigate the effect of different extraction conditions of kefiran on the structural and physical properties of the edible films obtained. Fourier-transform infrared spectroscopy and scanning electron microscopy were performed, together with a determinations of moisture content, solubility, water vapor permeability and degree of swelling. The kefiran films presented values of the water vapor permeability between 0.93 and 4.38 × 10−11 g/m.s.Pa. These results can be attributed to the development of a more compact structure, where glycerol had no power to increase the free volume and the water vapor diffusion through their structure. The possible conformational changes in the kefiran film structure, due to the interspersing of the plasticizers and water molecules that they absorb, could be the reason for producing flexible kefiran films in the case of using glycerol as a plasticizer at 7.5% w/w. Moreover, it was observed that the extraction conditions are a significant factor in the properties of these films and their food technology applications.


Polymers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 769
Author(s):  
Vlad Mihalca ◽  
Andreea Diana Kerezsi ◽  
Achim Weber ◽  
Carmen Gruber-Traub ◽  
Jürgen Schmucker ◽  
...  

Food packaging is an area of interest not just for food producers or food marketing, but also for consumers who are more and more aware about the fact that food packaging has a great impact on food product quality and on the environment. The most used materials for the packaging of food are plastic, glass, metal, and paper. Still, over time edible films have become widely used for a variety of different products and different food categories such as meat products, vegetables, or dairy products. For example, proteins are excellent materials used for obtaining edible or non-edible coatings and films. The scope of this review is to overview the literature on protein utilization in food packages and edible packages, their functionalization, antioxidant, antimicrobial and antifungal activities, and economic perspectives. Different vegetable (corn, soy, mung bean, pea, grass pea, wild and Pasankalla quinoa, bitter vetch) and animal (whey, casein, keratin, collagen, gelatin, surimi, egg white) protein sources are discussed. Mechanical properties, thickness, moisture content, water vapor permeability, sensorial properties, and suitability for the environment also have a significant impact on protein-based packages utilization.


2000 ◽  
Vol 9 (1) ◽  
pp. 23-35 ◽  
Author(s):  
P. TANADA-PALMU ◽  
H. HELÉN ◽  
L. HYVÖNEN

Edible films from wheat gluten were prepared with various amounts of glycerol as a plasticizer. Water vapor permeability, oxygen permeability, tensile strength and percentage elongation at break at different water activities ( aw ) were measured. Films with low amounts of glycerol had lower water vapor and oxygen permeabilities, higher tensile strength and lower elongation at break. Wheat gluten coatings reduced weight loss during two weeks of storage for cherry tomatoes and sharon fruits compared to uncoated controls. A bilayer film of wheat gluten and beeswax significantly lowered weight loss from coated cheese cubes compared to single layer coating of wheat gluten.;


Coatings ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 506 ◽  
Author(s):  
Dulce C. González Sandoval ◽  
Brenda Luna Sosa ◽  
Guillermo Cristian Guadalupe Martínez-Ávila ◽  
Humberto Rodríguez Fuentes ◽  
Victor H. Avendaño Abarca ◽  
...  

The consumption of organic products has increased in recent years. One of the most important products in Mexico is nopal. Nopal’s content and properties make the formulation of edible films possible. In this study, we aimed to develop and characterize biodegradable edible films containing mucilage from Opuntia ficus-indica. The mucilage extraction yield, thickness, color, water vapor permeability, light transmission rate, film transparency, solubility, stability of dispersion, and puncture strength were measured. The use of mucilage from different cultivars affected the water vapor permeability (8.40 × 10−11 g·m−1·s−1·Pa−1 for cultivar Villanueva, 3.48 × 10−11 g·m−1·s−1·Pa−1 for Jalpa, and 1.63 × 10−11 g·m−1·s−1·Pa−1 for Copena F1). Jalpa provided the most soluble mucilage with the highest thickness (0.105 mm). Copena F1 provided the clearest film with the greatest transparency (3.81), the best yellowness index, and the highest resistance (4.44 N·mm−1). Furthermore, this film had the best light transmission rate (48.93%). The Copena F1 showed the best film formation solution viscosity. These results indicate that mucilage mixed with pectin is a potential source for the formulation of edible films.


Polymers ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 158
Author(s):  
Yao Dou ◽  
Liguang Zhang ◽  
Buning Zhang ◽  
Ming He ◽  
Weimei Shi ◽  
...  

The development of edible films based on the natural biopolymer feather keratin (FK) from poultry feathers is of great interest to food packaging. Edible dialdehyde carboxymethyl cellulose (DCMC) crosslinked FK films plasticized with glycerol were prepared by a casting method. The effect of DCMC crosslinking on the microstructure, light transmission, aggregate structure, tensile properties, water resistance and water vapor barrier were investigated. The results indicated the formation of both covalent and hydrogen bonding between FK and DCMC to form amorphous FK/DCMC films with good UV-barrier properties and transmittance. However, with increasing DCMC content, a decrease in tensile strength of the FK films indicated that plasticization, induced by hydrophilic properties of the DCMC, partly offset the crosslinking effect. Reduction in the moisture content, solubility and water vapor permeability indicated that DCMC crosslinking slightly reduced the moisture sensitivity of the FK films. Thus, DCMC crosslinking increased the potential viability of the FK films for food packaging applications, offering a value-added product.


Coatings ◽  
2017 ◽  
Vol 7 (11) ◽  
pp. 183 ◽  
Author(s):  
Thi Cao ◽  
So-Young Yang ◽  
Kyung Song

In this study, barnyard millet starch (BMS) was used to prepare edible films. Antioxidant activity was conferred to the BMS film by incorporating borage seed oil (BO). The physical, optical, and thermal properties as well as antioxidant activities of the films were evaluated. The incorporation of BO into the BMS films decreased the tensile strength from 9.46 to 4.69 MPa and increased the elongation at break of the films from 82.49% to 103.87%. Water vapor permeability, water solubility, and moisture content of the BMS films decreased with increasing BO concentration, whereas Hunter b value and opacity increased, L and a values of the films decreased. The BMS films containing BO exhibited antioxidant activity that increased proportionally with increased BO concentration. In particular, the BMS film with 1.0% BO exhibited the highest antioxidant activity and light barrier properties among the BMS films. Therefore, the BMS films with added BO can be used as an antioxidant packaging material.


Author(s):  
Neda Maftoonazad ◽  
Hosahalli S. Ramaswamy ◽  
Michele Marcotte

The moisture sorption behavior of pectin films formulated with different sorbitol content was evaluated and films with different equilibrium moisture contents were obtained. Different models were used to describe the moisture sorption isotherms (MSI) of pectin films, sorbitol and pectin powder. Based on changes observed in MSI, sorbitol was found to strongly interact with pectin polymers. Incorporation of sorbitol in pectin films resulted in lower equilibrium moisture contents at low to intermediate water activities (aw), but much higher moisture contents at aw > 0.53. Estimates of monolayer moisture values (1.53 – 3.81 g H2O kg-1 solids) were obtained by the application of Guggenheim-Anderson-DeBoer (GAB) model. A differential mechanical analyzer (DMA) was used for mechanical properties of formulated films while a differential scanning calorimeter (DSC) was used for thermal properties and glass transition temperature (Tg). With both DMA and DSC tests, the strong plasticizing action of water and sorbitol was evident. Tg vs. moisture content data were successfully fitted to the Fox empirical model. Multi-frequency DMA measurements provided estimates for the apparent activation energy (Ea) of the second glass transition in the range of 131-184 kJ/mol; the values for Ea decreased with increasing sorbitol concentration. Water vapor permeability (WVP) and mechanical properties of the films were also analyzed under varying sorbitol and moisture contents. Increasing moisture or addition of sorbitol to pectin films increased the elongation at break, but decreased the tensile strength, modulus of elasticity and Tg, and increased WVP of the films.


Sign in / Sign up

Export Citation Format

Share Document