scholarly journals Prediction of Dissolved Impurities and Movement of Oxide Particles in the Primary Circuit of LBE Fast Reactor

Coatings ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1263
Author(s):  
Jiewei Wu ◽  
Rongjun Wu ◽  
Yuqing Wang ◽  
Jianbo He ◽  
Chen Hu ◽  
...  

To better understand the corrosion and corrosion products behavior in the primary circuit of lead-bismuth eutectic (LBE) coolant reactor, the concentration distribution of soluble impurities and the transport of solid particles are investigated through the finite-element method. An axisymmetric model of the primary circuit of an LBE reactor was constructed to accelerate the calculation of the thermal hydraulic filed of the circuit. The saturation concentration of solute Fe, Cr and Ni in LBE coolant are identified through the equilibrium of their oxides and PbO, and the very different saturation concentrations of Fe/Cr/Ni in LBE will lead to significant element-selective corrosion. The migration of solid oxide particles in the primary circuit is also investigated by the Euler–Lagrange tracing model. The simulation shows that driving force for the movement of particles >100 μm is buoyancy, which lets particles float on a free surface, while particles <10 μm tend to suspend in coolant. However, the behavior of particles also depends on the formation position, the particles formed above the core have a high possibility of re-entering in the core.

Author(s):  
Jiewei Wu ◽  
Rongjun Wu ◽  
Yuqing Wang ◽  
Jianbo He ◽  
Chen Hu ◽  
...  

For better understanding the corrosion and corrosion products behavior in the primary circuit of lead-bismuth eutectic (LBE) coolant reactor, the concentration distribution of soluble impurities and the transport of solid particles are investigated through finite-element method. An axisymmetric model of the primary circuit of LBE reactor was constructed to accelerate the calculation the thermal hydraulic filed of circuit. The saturation concentration of solute Fe, Cr and Ni in LBE coolant are identified through the equilibrium of their oxides and PbO. And the very different saturation concentrations of Fe/Cr/Ni in LBE will lead to significant element selective corrosion. The migration of solid oxides particles in the primary circuit is also investigated by the Euler-Lagrange tracing model. The simulation shows that driving force for the movement of particles &amp;gt;100 &mu;m is buoyancy, which lets particles float on a free surface, while particles &amp;lt;10 &mu;m tend to suspend in coolant. However, the behavior of particles also depends on the formation position, the particles formed above the core have the high possibility of re-entering in the core.


Kerntechnik ◽  
2021 ◽  
Vol 86 (1) ◽  
pp. 45-49
Author(s):  
N. V. Maslov ◽  
E. I. Grishanin ◽  
P. N. Alekseev

Abstract This paper presents results of calculation studies of the viability of coated particles in the conditions of the reactor core on fast neutrons with sodium cooling, justifying the development of the concept of the reactor BN with microspherical fuel. Traditional rod fuel assemblies with pellet MOX fuel in the core of a fast sodium reactor are directly replaced by fuel assemblies with micro-spherical mixed (U,Pu)C-fuel. Due to the fact that the micro-spherical (U, Pu)C fuel has a developed heat removal surface and that the design solution for the fuel assembly with coated particles is horizontal cooling of the microspherical fuel, the core has additional possibilities of increasing inherent (passive) safety and improve the competitiveness of BN type of reactors. It is obvious from obtained results that the microspherical (U, Pu)C fuel is limited with the maximal burn-up depth of ∼11% of heavy atoms in conditions of the sodium-cooled fast reactor core at the conservative approach; it gives the possibility of reaching stated thermal-hydraulic and neutron-physical characteristics. Such a tolerant fuel makes it less likely that fission products will enter the primary circuit in case of accidents with loss of coolant and the introduction of positive reactivity, since the coating of microspherical fuel withstands higher temperatures than the steel shell of traditional rod-type fuel elements.


Author(s):  
Johannes Fachinger ◽  
Heiko Barnert ◽  
Alexander P. Kummer ◽  
Guido Caspary ◽  
Manuel Seubert ◽  
...  

Pebble Bed HTGR’s like the AVR in Ju¨lich have the advantage of continuous fuelling. However the multiple passes of the fuel pebbles through the core have the disadvantage that the pebble’s movement through the fuelling system and the core produces graphite dust. This dust is transported from the core to other parts of the primary circuit and deposits on components. Although previous experiments performed during AVR operation have given some insight into the dust particle size and activity, there is little information on the behaviour of the dust that was deposited in the system. The decommissioning of the AVR has provided the opportunity to sample and characterise such dust from a number of components and gauge the adhesion strength. From the side of PBMR Pty Ltd this opportunity is considered important to enhance the knowledge about dust characteristics before the PBMR Demonstration Power Plant (DPP) is operational and able to produce specific plant information through sampling and analysis. AVR GmbH has provided a number of pipes and joints for investigation of loose and bound dust. Phase 1 of the analysis was used to determine the best techniques to be used on larger items. No measurable loose dust could be collected. Thereupon rings were cut from a T-section and subdivided into eight segments. The surface of the untreated segments were photographed and documented by optical microscopy, the dose rates were measured and gamma-spectrometry performed. Following this a mechanical or chemical decontamination was carried out to remove and isolate the bound dust. The average isolated dust amount was about 2 mg/cm2. Both decontamination processes indicates a strong bonding of the dust surface layer. In the case of mechanical decontamination about 60% and by chemical decontamination about 95% of the radionuclide inventory could be removed. The contribution of removed metal needs to be investigated in more detail. The median number related particle size measured by optical microscopy was found to be in the range of 0.2 to 0.7 μm whereas the median weight related size is in the range of 0.8 to 1.5 μm. The initial results indicate that this dust sticks very strongly to the pipe surface. Phase 2 will concentrate on longer pieces of piping where hopefully more loose dust can be obtained and analysed. If the same strong bonding is observed the reason for this phenomenon needs to be explained and perhaps tested with non-active dust.


Author(s):  
Yu. A. Taran ◽  
A. V. Kozlov ◽  
A. L. Taran

The aim of the work is to consider the mechanism of clogging the pores of the filter unit by small particles from the flow of filtrate inside them. Theoretical ideas about the process of filtering with the deposition of small particles from the filtrate on the pore walls and attribution of its fundamentals to restructuring from the original structure to the final structure allow to describe the process of clogging the pores using well studied concepts of known processes with phase transformations (in particular, crystallization). Based on this analogy and the approach to the description of the transformation of the "old" structure into a "new" one in time, using experimental data and their processing we calculated the rate of nucleation of the sediment centers (ωnucl), the linear (υlin) and volumetric rates of sediment plaques growth in the pores of the filter unit at different values of the process driving force, at different pressure difference in the system, and at different concentrations of solid particles in the suspension. Interpolation and extrapolation dependences were obtained for analyzing the mechanisms of sediments formation and growth for determining and calculating these (ωnucl, υlin) rates. Using the concepts of nonequilibrium thermodynamics to assess the influence of the driving forces we studied their influence (changes in the concentration of solid particles in the filtrate suspension and pressure drop across the filtering layer) on the dynamics of the filtration process. Using the data obtained it is possible to find the degree of clogging of through pores, which determines the filtration conditions, the filter septum type, and the filter overall dimensions.


2014 ◽  
Vol 1008-1009 ◽  
pp. 593-597
Author(s):  
Wen Xiang Li ◽  
Rui Bo Su ◽  
Gang Liu ◽  
Peng Wang ◽  
Yi Xuan Chen

The core of the 10kV three-core cable is in the shape of a trefoil. Not all the radial direction of the actual heat transfer characteristics are the same. The finite element method serve as the three core cable temperature field research method in this text, in order to analyze the internal temperature distribution of three core cable, establish a steady state thermal circuit model in accordance with the characteristics of heat transfer from the cable conductor to the surface in the three-core cable , give the calculation of conductor temperature algorithm, and calculate the various parameters in the model.


2020 ◽  
Vol 20 (11) ◽  
pp. 2050113
Author(s):  
A. Hosseinkhani ◽  
D. Younesian ◽  
M. Ranjbar

In this paper, we study vibro-acoustic behavior of auxetic sandwich panels subjected to different excitations and boundary conditions. The core of this panel has the auxetic feature (with negative Poisson’s ratio or NPR) with anti-tetrachiral honeycomb structure. Mechanical behavior of the core is formulated using theoretical relations presented for this kind of auxetic. Using the Finite Element Method, the modal analysis and spectral analysis of the structure are accomplished. Different random colored noises are applied as the system excitation. First, a parametric study is performed; and some interesting results are observed from investigating the effects of geometric parameters, boundary conditions, and noise color on the vibro-acoustic behavior of the structure. These parameters affect the natural frequencies, level of radiated sound, and mass of the structure. An optimization algorithm is applied to the geometrical parameters in order to simultaneously reduce the level of radiated sound and preserve the amount of total mass. By the use of the Genetic Algorithm (GA), we could achieve a remarkable noise attenuation gain. It is shown that the GA choses different optimized parameters for the structure according to the location of the load and frequency content of the load spectrum.


Sensors ◽  
2020 ◽  
Vol 20 (1) ◽  
pp. 266 ◽  
Author(s):  
Anna Ostaszewska-Liżewska ◽  
Roman Szewczyk ◽  
Peter Raback ◽  
Mika Malinen

Magnetoelastic force sensors exhibit high sensitivity and robustness. One commonly used configuration of force sensor with a ring-shaped core was presented by Mohri at al. In this configuration force is applied in the direction of a diameter of the core. However, due to inhomogeneous distribution of stresses, model of such sensor has not been presented yet. This paper is filling the gap presenting a new method of modelling the magnetoelastic effect, which is especially suitable for the finite element method. The presented implementation of proposed model is in good agreement with experimental data and creates new possibilities of modelling other devices utilizing magnetoelastic effect.


Sign in / Sign up

Export Citation Format

Share Document