scholarly journals Electroplating of Pure Aluminum from [HMIm][TFSI]–AlCl3 Room-Temperature Ionic Liquid

Coatings ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1414
Author(s):  
Yarden Melamed ◽  
Nabasmita Maity ◽  
Louisa Meshi ◽  
Noam Eliaz

Electrodeposition of aluminum and its alloys is of great interest in the aerospace, automobile, microelectronics, energy, recycle, and other industrial sectors, as well as for defense and, potentially, electrochemical printing applications. Here, for the first time, we report room-temperature electroplating of pure aluminum on copper and nickel substrates from an ionic liquid (IL) consisting of 1-Hexyl-3-methylimidazolium (HMIm) cation and bis(trifluoromethylsulfonyl)imide (TFSI) anion, with a high concentration of 8 mol/L AlCl3 aluminum precursor. The aluminum deposits are shown to have a homogeneous and dense nanocrystalline structure. A quasi-reversible reaction is monitored, where the current is affected by both charge transfer and mass transport. The electrocrystallization of Al on Ni is characterized by instantaneous nucleation. The deposited Al layers are dense, homogeneous, and of good surface coverage. They have a nanocrystalline, single-phase Al (FCC) structure, with a dislocation density typical of Al metal. An increase in the applied cathodic potential from −1.3 to −1.5 V vs. Pt resulted in more than one order of magnitude increase in the deposition rate (to ca. 44 μm per hour), as well as in ca. one order of magnitude finer grain size. The deposition rate is in accordance with typical industrial coating systems.

Author(s):  
Nana Hozuki ◽  
Kenichi Kaminaga ◽  
Shingo Maruyama ◽  
Daisuke Shiga ◽  
Hiroshi Kumigashira ◽  
...  

Abstract Ta ions-containing solutions, which are brown in color with no precipitation, were successfully prepared through an electroelution process with ionic liquid (IL). An as-delivered Ta metal plate covered with a passivation oxide film could be easily eluted even at room temperature by simply applying an anodic potential of, e.g. +2.2 V vs. Ag in [Bmim][PF6] IL. According to the quantity of electric charge required for oxidation of Ta, most Ta ions in the IL were suggested to be in an oxidation state of +5, which was also confirmed by x-ray photoemission spectroscopy (XPS). Ta ions in IL were found to thermally evaporate together with IL molecules by heating in a vacuum, forming a deposit of the Ta ions-containing IL on a substrate. The Ta concentrations in the deposits were reduced uniquely by about one order of magnitude from those in the original bulk source through the evaporation process under the present conditions. Furthermore, a possibility of the formation of thin film-like Ta oxide from such a Ta ions-containing IL deposit and its bulk droplet prepared on substrates by annealing in air at 1000oC will be discussed.


2021 ◽  
Author(s):  
Ying Liu ◽  
Xiangyuan Cui ◽  
Ranming Niu ◽  
Shujun Zhang ◽  
Xiaozhou Liao ◽  
...  

Abstract Plastic deformation in ceramic materials is normally only observed in nanometre-sized samples. However, we have observed unprecedented levels of plasticity (>50% plastic strain) and excellent elasticity (6% elastic strain) in perovskite oxide Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 (PIN-PMN-PT), under compression along <100>pc pillars up to 2.1 μm in diameter. The extent of this deformation is much higher than has previously been reported for ceramic materials, and the sample size at which plasticity is observed is almost an order of magnitude larger. Bending tests also revealed over 8% flexural strain. Plastic deformation occurred by slip along {110} <110>. Calculations indicate that the resulting strain gradients will give rise to extreme flexoelectric polarization. First principles models predict that a high concentration of oxygen vacancies (Vo) weaken the covalent/ionic bonds, giving rise to the unexpected plasticity. Mechanical testing on Vo-rich Mn-doped PIN-PMN-PT confirmed this prediction. These findings will facilitate the design of plastic ceramic materials and the development of flexoelectric-based nano-electromechanical systems.


2005 ◽  
Vol 237-240 ◽  
pp. 402-407 ◽  
Author(s):  
Fanny Dyment ◽  
Silvia Balart ◽  
Constanza Lugo ◽  
Rodolfo A. Pérez ◽  
Nicolás Di Lalla ◽  
...  

The self-diffusion of Ru in the temperature range of (1267-1373) K and the Ru diffusion in pure aluminum in the temperature range of (632-873) K is reported. Difficulties were encountered when working with Ru as matrix (its brittleness at room temperature impeded a good sectioning) and they are the reason why only the order of magnitude of the self-diffusion in the small range of temperature studied is given. For Ru diffusion in aluminum, two experimental techniques were used: the conventional serial sectioning with use of a radiotracer, 103Ru, for the highest temperatures and Heavy Ions Rutherford Backscattering Spectrometry (HIRBS) for the lowest ones. The diffusion parameters are: Q = 199.4 kJ/mol and D0 = 4.1x10-2 m2/s. A comparison is made with Ru diffusion behavior in copper and silver.


RSC Advances ◽  
2015 ◽  
Vol 5 (51) ◽  
pp. 40546-40551 ◽  
Author(s):  
Mukesh Sharma ◽  
Dibyendu Mondal ◽  
Nripat Singh ◽  
Nitin Trivedi ◽  
Jitkumar Bhatt ◽  
...  

DNA (Salmon testes) was solubilized in a biocompatible ionic liquid at up to 8 wt% with long term (one year) structural and chemical stability upon storage at room temperature.


Author(s):  
T.E. Pratt ◽  
R.W. Vook

(111) oriented thin monocrystalline Ni films have been prepared by vacuum evaporation and examined by transmission electron microscopy and electron diffraction. In high vacuum, at room temperature, a layer of NaCl was first evaporated onto a freshly air-cleaved muscovite substrate clamped to a copper block with attached heater and thermocouple. Then, at various substrate temperatures, with other parameters held within a narrow range, Ni was evaporated from a tungsten filament. It had been shown previously that similar procedures would yield monocrystalline films of CU, Ag, and Au.For the films examined with respect to temperature dependent effects, typical deposition parameters were: Ni film thickness, 500-800 A; Ni deposition rate, 10 A/sec.; residual pressure, 10-6 torr; NaCl film thickness, 250 A; and NaCl deposition rate, 10 A/sec. Some additional evaporations involved higher deposition rates and lower film thicknesses.Monocrystalline films were obtained with substrate temperatures above 500° C. Below 450° C, the films were polycrystalline with a strong (111) preferred orientation.


2003 ◽  
Vol 775 ◽  
Author(s):  
Tsuyoshi Kijima ◽  
Kenichi Iwanaga ◽  
Tomomi Hamasuna ◽  
Shinji Mohri ◽  
Mitsunori Yada ◽  
...  

AbstractEuropium-doped hexagonal-mesostructured and nanotubular yttrium oxides templated by dodecylsulfate species as well as surfactant free bulk oxides were synthesized by the homogeneous precipitation method. All the as grown nanostructured or bulk materials with amorphous or poorly crystalline frameworks showed weak luminescence bands at room temperature. On calcination at 1000°C these materials were converted into highly crystalline yttrium oxides, resulting in a total increase in intensity of all the bands by one order of magnitude. In the hexagonal-mesostructured system, the main band due to the 5D0-7F2 transition for the calcined phases showed a sharp but asymmetrical multiplet splitting indicating multiple Eu sites. Concentration quenching was found at a Eu content of 3 mol% or above for these phases. In contrast, the main emission for the calcined solids in the nanotubular system occurred as poorly resolved broad band and the intensity of the main band at higher Eu content was significantly enhanced compared with those for the other two systems.


2003 ◽  
Vol 775 ◽  
Author(s):  
Sung-Hwa Oh ◽  
Ju-Myung Song ◽  
Joon-Seop Kim ◽  
Hyang-Rim Oh ◽  
Jeong-A Yu

AbstractSolution behaviors of poly(styrene-co-sodium methacrylate) were studied by fluorescence spectroscopic methods using pyrene as a probe. The mol% of methacrylate was in the range 3.6–9.4. Water and N,N-dimethylforamide(DMF) mixture was used as a solvent (DMF/water = 0.2 mol %). The critical micelle (or aggregation) concentrations of ionomers and the partition coefficients of pyrene were obtained the temperature range 10–80°C. At room temperature, the values of CMCs (or CACs) were in the range 4.7 ×10-6 5.3 ×10-6 g/mL and we could not find any notable effect of the content of ionic repeat units within the experimental errors. Unlike CMCs, as the ion content increased, partitioning of pyrene between the hydrophobic aggregates and an aqueous media decreased from 1.5 ×105 to 9.4 ×104. As the temperature increased from 10 to 80 °C, the values of CMCs increased less than one order of magnitude. While, the partition coefficients of pyrene decreased one order of magnitude and the effect of the ion content became negligible.


2018 ◽  
Vol 21 (8) ◽  
pp. 602-608 ◽  
Author(s):  
Zainab Ehsani-Nasab ◽  
Ali Ezabadi

Aim and Objective: In the present work, 1, 1’-sulfinyldiethylammonium bis (hydrogen sulfate) as a novel room temperature dicationic ionic liquid was synthesized and used as a catalyst for xanthenediones synthesis. Material and Method: The dicationic ionic liquid has been synthesized using ethylamine and thionyl chloride as precursors. Then, by the reaction of [(EtNH2)2SO]Cl2 with H2SO4, [(EtNH2)2SO][HSO4]2 was prepared and after that, it was characterized by FT-IR, 1H NMR, 13C NMR as well as Hammett acidity function. This dicationic ionic liquid was used as a catalyst for the synthesis of xanthenediones via condensation of structurally diverse aldehydes and dimedone under solvent-free conditions. The progress of the reaction was monitored by thin layer chromatography (ethyl acetate/n-hexane = 3/7). Results: An efficient solvent-free method for the synthesis of xanthenediones has been developed in the presence of [(EtNH2)2SO][HSO4]2 as a powerful catalyst with high to excellent yields, and short reaction times. Additionally, recycling studies have demonstrated that the dicationic ionic liquid can be readily recovered and reused at least four times without significant loss of its catalytic activity. Conclusion: This new dicationic ionic liquid can act as a highly efficient catalyst for xanthenediones synthesis under solvent-free conditions.


Sign in / Sign up

Export Citation Format

Share Document