scholarly journals Mixtures of Scutellaria baicalensis and Glycyrrhiza L. Extracts as Antibacterial and Antiviral Agents in Active Coatings

Coatings ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1438
Author(s):  
Magdalena Ordon ◽  
Paweł Nawrotek ◽  
Xymena Stachurska ◽  
Anna Schmidt ◽  
Małgorzata Mizielińska

The aim of this study was to develop active packaging materials covered in active coatings (offering antibacterial and antiviral properties) that contain selected plant extracts. In addition, the synergistic effect of the active substances in these extracts was also analysed. The results of the study demonstrated that Scutellaria baicalensis and Glycyrrhiza L. extracts (two of six analysed plant extracts) were the most active agents against selected Gram-positive and Gram-negative bacterial strains. Additionally, the synergistic effect of S. baicalensis and Glycyrrhiza L. extracts was noted, meaning that the effect of these two plant extract mixtures on Bacillus subtilis, Staphylococcus aureus, Escherichia coli and Pseudomonas syringae growth was higher than the activity of individual pure extracts. Mixtures of the extracts were introduced into the coating carrier. A polyethylene (PE) foil was then coated with active layers containing mixtures of S. baicalensis and Glycyrrhiza L. extracts as antimicrobial agents. The results of this research showed that all of the active coatings had a bacteriolytic effect on B. subtilis and a bacteriostatic effect on S. aureus cells. The coatings were found to be inactive against E. coli and P. syringae cells. This means that the coatings could be used as internal coatings to preserve food products against Gram-positive bacteria that may be responsible for food spoilage. The results of this study also demonstrated that the coatings were highly active against phage phi 6 phage particles, used as SARS-CoV-2 surrogate. This means that the coatings could be used as external coatings to limit the spread of SARS-CoV-2 and pathogenic Gram-positive bacteria via human hands.

Author(s):  
LONG HOANG NGO ◽  
THI HAI YEN NGUYEN ◽  
VU KHAC TRAN ◽  
VU VAN DOAN ◽  
MINH VAN NGUYEN ◽  
...  

Objectives: Infectious diseases caused by bacteria are a leading cause of death worldwide. Hence, the objectives of the study are aimed to evaluate the antibacterial activity against five human pathogenic bacteria of methanolic extracts from 66 plants collected from Vietnam. Methods: The broth microdilution method was used to determine the minimum inhibitory concentration (MIC) of methanol extracts of 66 plant species against five bacterial strains. Results: In this study, all the plant extracts were active against at least one train with MIC values ranging from 24 to 2048 μg/mL. Twenty-five plant extracts were active against all three Gram-positive bacteria (Bacillus cereus, Bacillus subtilis, and Staphylococcus aureus). Of these, the extracts of Macaranga trichocarpa (Rchb. f. and Zoll.) Mull. Arg. (Euphorbiaceae), Calophyllum inophyllum L. (Clusiaceae) and Caryodaphnopsis baviensis (Lecomte) Airy Shaw (Lauraceae) exhibited the highest antibacterial activity (MIC =24–128 μg/mL), followed by extracts of Betula alnoides Buch.- Ham. e × . D. Don (Betulaceae), Acronychia pedunculata (L.) Miq. (Rutaceae), Croton alpinus A. Chev. ex Gagnep. (Euphorbiaceae) (MIC =64–256 μg/mL). Furthermore, the extract of Rhus chinensis Mill. (Anacardiaceae) and Annona reticulata L. (Annonaceae) exhibited potent antibacterial activity against the two Bacillus species (MIC =32–64 μg/mL). Conclusion: Results of this study reveal that plant extracts from Vietnam have highly antibacterial activity against Gram-positive bacteria. These results suggest that Vietnamese plant extracts may be a rich source of antibacterial drugs.


2003 ◽  
Vol 54 (3) ◽  
pp. 179-187 ◽  
Author(s):  
A.P Johnson ◽  
C Henwood ◽  
S Mushtaq ◽  
D James ◽  
M Warner ◽  
...  

2013 ◽  
Vol 79 (21) ◽  
pp. 6737-6746 ◽  
Author(s):  
Hilda Tiricz ◽  
Attila Szűcs ◽  
Attila Farkas ◽  
Bernadett Pap ◽  
Rui M. Lima ◽  
...  

ABSTRACTLeguminous plants establish symbiosis with nitrogen-fixing alpha- and betaproteobacteria, collectively called rhizobia, which provide combined nitrogen to support plant growth. Members of the inverted repeat-lacking clade of legumes impose terminal differentiation on their endosymbiotic bacterium partners with the help of the nodule-specific cysteine-rich (NCR) peptide family composed of close to 600 members. Among the few tested NCR peptides, cationic ones had antirhizobial activity measured by reduction or elimination of the CFU and uptake of the membrane-impermeable dye propidium iodide. Here, the antimicrobial spectrum of two of these peptides, NCR247 and NCR335, was investigated, and their effect on the transcriptome of the natural targetSinorhizobium melilotiwas characterized. Both peptides were able to kill quickly a wide range of Gram-negative and Gram-positive bacteria; however, their spectra were only partially overlapping, and differences were found also in their efficacy on given strains, indicating that the actions of NCR247 and NCR335 might be similar though not identical. Treatment ofS. meliloticultures with either peptide resulted in a quick downregulation of genes involved in basic cellular functions, such as transcription-translation and energy production, as well as upregulation of genes involved in stress and oxidative stress responses and membrane transport. Similar changes provoked mainly in Gram-positive bacteria by antimicrobial agents were coupled with the destruction of membrane potential, indicating that it might also be a common step in the bactericidal actions of NCR247 and NCR335.


Drugs ◽  
1996 ◽  
Vol 51 (Supplement 1) ◽  
pp. 6-12 ◽  
Author(s):  
Martin G. Cormican ◽  
Ronald N. Jones

Revista CERES ◽  
2013 ◽  
Vol 60 (5) ◽  
pp. 731-734 ◽  
Author(s):  
Álan Alex Aleixo ◽  
Karina Marjorie Silva Herrera ◽  
Rosy Iara Maciel de Azambuja Ribeiro ◽  
Luciana Alves Rodrigues dos Santos Lima ◽  
Jaqueline Maria Siqueira Ferreira

Baccharis trimera (Less.) (Asteraceae), popularly know as "carqueja", is a species commonly used in folk medicine for the treatment or prevention of diseases. In this context, the purpose of this work was to study the antibacterial activity of crude hydroalcoholic extract from Baccharis trimera against Gram-positive bacterial strains (Staphylococcus aureus ATCC 29213, Staphylococcus saprophyticus ATCC 15305, Staphylococcus epidermidis ATCC 12228, Enterococcus faecalis ATCC 19433) and Gram-negative bacteria (Escherichia coli EHEC ATCC 43895, Pseudomonas aeruginosa ATCC 27853, Klebsiella pneumoniae ATCC 27736, Salmonella typhi ATCC 19430) of clinical interest. Antibacterial susceptibility was evaluated by broth microdilution assay following the CLSI (formerly the NCCLS) guidelines. The extract from B. trimera showed antibacterial activity against Gram-positive bacteria and the most interesting result was obtained against S. epidermidis that presented Minimal Inhibitory Concentration of 250μg/mL. These results indicate that B. trimera have bacterisostatic potential against Gram-positive bacterial strains of medical interest and could serve as a base for further studies on the use of isolated compounds from this species as future antimicrobials.


2011 ◽  
Vol 8 (1) ◽  
pp. 305-311 ◽  
Author(s):  
Priyanka Kamaria ◽  
N. Kawathekar ◽  
Prerna Chaturvedi

In order to develop new antimicrobial agents, a series of Schiff bases of indole-3-aldehyde were synthesized by microwave assisted synthesis by takingDMFas solvent and evaluated for their antimicrobial activity. All the synthesized compounds were characterized byIR,1HNMRand mass spectral analysis. All compounds were tested against five gram positive and five gram negative bacterial strains and one fungal strain. All compounds exhibited better activity against gram positive strains than against gram negative strains and the compounds were found more active againstS.aureusandB.subtilis.


Author(s):  
Yoshimitsu Masuda ◽  
Shun Kawabata ◽  
Tatsuya Uedoi ◽  
Ken-ichi Honjoh ◽  
Takahisa Miyamoto

We demonstrated that we could combine LLB and phage to construct promising novel antimicrobial agents, LLB-phage. The first LLB-phage, lnqQ -T7 phage, can control the growth of both the Gram-negative host strain and neighboring Gram-positive bacteria while preventing the emergence of phage resistance in the host strain.


2020 ◽  
Vol 8 (2) ◽  
pp. 191 ◽  
Author(s):  
Despoina Koulenti ◽  
Elena Xu ◽  
Andrew Song ◽  
Isaac Yin Sum Mok ◽  
Drosos E. Karageorgopoulos ◽  
...  

Antimicrobial agents are currently the mainstay of treatment for bacterial infections worldwide. However, due to the increased use of antimicrobials in both human and animal medicine, pathogens have now evolved to possess high levels of multi-drug resistance, leading to the persistence and spread of difficult-to-treat infections. Several current antibacterial agents active against Gram-positive bacteria will be rendered useless in the face of increasing resistance rates. There are several emerging antibiotics under development, some of which have been shown to be more effective with an improved safety profile than current treatment regimens against Gram-positive bacteria. We will extensively discuss these antibiotics under clinical development (phase I-III clinical trials) to combat Gram-positive bacteria, such as Staphylococcus aureus, Enterococcus faecium and Streptococcus pneumoniae. We will delve into the mechanism of actions, microbiological spectrum, and, where available, the pharmacokinetics, safety profile, and efficacy of these drugs, aiming to provide a comprehensive review to the involved stakeholders.


Foods ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 324 ◽  
Author(s):  
Shayma Thyab Gddoa Al-sahlany ◽  
Ammar Altemimi ◽  
Alaa Al-Manhel ◽  
Alaa Niamah ◽  
Naoufal Lakhssassi ◽  
...  

A variety of organisms produce bioactive peptides that express inhibition activity against other organisms. Saccharomyces cerevisiae is considered the best example of a unicellular organism that is useful for studying peptide production. In this study, an antibacterial peptide was produced and isolated from Saccharomyces cerevisiae (Baker’s yeast) by an ultrafiltration process (two membranes with cut-offs of 2 and 10 kDa) and purified using the ÄKTA Pure 25 system. Antibacterial peptide activity was characterized and examined against four bacterial strains including Gram-positive and Gram-negative bacteria. The optimum condition for yeast growth and antibacterial peptide production against both Escherichia. coli and Klebsiella aerogenes was 25–30 °C within a 48 h period. The isolated peptide had a molecular weight of 9770 Da, was thermostable at 50–90 °C for 30 min, and tolerated a pH range of 5–7 at 4 °C and 25 °C during the first 24 h, making this isolated antibacterial peptides suitable for use in sterilization and thermal processes, which are very important aspect in food production. The isolated antibacterial peptide caused a rapid and steady decline in the number of viable cells from 2 to 2.3 log units of gram-negative strains and from 1.5 to 1.8 log units of gram-positive strains during 24 h of incubation. The isolated antibacterial peptide from Saccharomyces cerevisiae may present a potential biopreservative compound in the food industry exhibiting inhibition activity against gram-negative and gram-positive bacteria.


2019 ◽  
Vol 64 (3) ◽  
Author(s):  
Ian Morrissey ◽  
Stephen Hawser ◽  
Sibylle H. Lob ◽  
James A. Karlowsky ◽  
Matteo Bassetti ◽  
...  

ABSTRACT Eravacycline is a novel, fully synthetic fluorocycline antibiotic being developed for the treatment of serious infections, including those caused by resistant Gram-positive pathogens. Here, we evaluated the in vitro activities of eravacycline and comparator antimicrobial agents against a recent global collection of frequently encountered clinical isolates of Gram-positive bacteria. The CLSI broth microdilution method was used to determine in vitro MIC data for isolates of Enterococcus spp. (n = 2,807), Staphylococcus spp. (n = 4,331), and Streptococcus spp. (n = 3,373) isolated primarily from respiratory, intra-abdominal, urinary, and skin specimens by clinical laboratories in 37 countries on three continents from 2013 to 2017. Susceptibilities were interpreted using both CLSI and EUCAST breakpoints. There were no substantive differences (a >1-doubling-dilution increase or decrease) in eravacycline MIC90 values for different species/organism groups over time or by region. Eravacycline showed MIC50 and MIC90 results of 0.06 and 0.12 μg/ml, respectively, when tested against Staphylococcus aureus, regardless of methicillin susceptibility. The MIC90 values of eravacycline for Staphylococcus epidermidis and Staphylococcus haemolyticus were equal (0.5 μg/ml). The eravacycline MIC90s for Enterococcus faecalis and Enterococcus faecium were 0.06 μg/ml and were within 1 doubling dilution regardless of the vancomycin susceptibility profile. Eravacycline exhibited MIC90 results of ≤0.06 μg/ml when tested against Streptococcus pneumoniae and beta-hemolytic and viridans group streptococcal isolates. In this surveillance study, eravacycline demonstrated potent in vitro activity against frequently isolated clinical isolates of Gram-positive bacteria (Enterococcus, Staphylococcus, and Streptococcus spp.), including isolates collected over a 5-year period (2013 to 2017), underscoring its potential benefit in the treatment of infections caused by common Gram-positive pathogens.


Sign in / Sign up

Export Citation Format

Share Document