scholarly journals An Optimized Multilayer Perceptrons Model Using Grey Wolf Optimizer to Predict Mechanical and Microstructural Properties of Friction Stir Processed Aluminum Alloy Reinforced by Nanoparticles

Coatings ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1476
Author(s):  
Ahmed B. Khoshaim ◽  
Essam B. Moustafa ◽  
Omar Talal Bafakeeh ◽  
Ammar H. Elsheikh

In the current investigation, AA2024 aluminum alloy is reinforced by alumina nanoparticles using a friction stir process (FSP) with multiple passes. The mechanical properties and microstructure observation are conducted experimentally using tensile, microhardness, and microscopy analysis methods. The impacts of the process parameters on the output responses, such as mechanical properties and microstructure grain refinement, were investigated. The effect of multiple FSP passes on the grain refinement, and various mechanical properties are evaluated, then the results are conducted to train a hybrid artificial intelligence predictive model. The model consists of a multilayer perceptrons optimized by a grey wolf optimizer to predict mechanical and microstructural properties of friction stir processed aluminum alloy reinforced by alumina nanoparticles. The inputs of the model were rotational speed, linear processing speed, and number of passes; while the outputs were grain size, aspect ratio, microhardness, and ultimate tensile strength. The prediction accuracy of the developed hybrid model was compared with that of standalone multilayer perceptrons model using different error measures. The developed hybrid model shows a higher accuracy compared with the standalone model.

2015 ◽  
Vol 63 (2) ◽  
pp. 475-478
Author(s):  
I. Küçükrendeci

Abstract In the study, the mechanical and microstructural properties of friction stir welded EN AW-6060 Aluminum Alloy plates were investigated. The friction stir welding (FSW) was conducted at tool rotational speeds of 900, 1250, and 1500 rpm and at welding speeds of 100, 150 and 180 mm/min. The effect of the tool rotational and welding speeds such properties was studied. The mechanical properties of the joints were evaluated by means of micro-hardness (HV) and tensile tests at room temperature. The tensile properties of the friction stir welded tensile specimens depend significantly on both the tool rotational and welding speeds. The microstructural evolution of the weld zone was analysed by optical observations of the weld zones


2020 ◽  
Vol 10 (3) ◽  
pp. 5596-5602
Author(s):  
M. A. Tashkandi ◽  
M. I. Mohamed

Friction welding is becoming a viable replacement of conventional joining methods. Continuous Drive Friction Welding (CDFW) is a type of friction welding used to join rods, tubes and similar shapes. Usually, the process contains a friction stage and a forging stage and the process parameters would be ticked accordingly. AA6061 is an Mg and Si aluminum alloy that is widely used in many industries. This research investigates the effect of friction time on the mechanical properties of AA6061 joints made with CDFW and the relation to the microstructure of the material and thermal profiles. It was found that AA6061 does not require a forging stage where solid joints are obtained without forging and did not fracture within the welding zones. Also, it was concluded that the process parameters are to be tailored in a way that produces a specific type of grain structure within the welding areas.


Author(s):  
Biswajit Parida ◽  
Sukhomay Pal ◽  
Pankaj Biswas ◽  
M M Mohapatra ◽  
Sujoy Tikader

The present study is on the development of friction stir welding (FSW) of commercial grade Al-alloy to study the mechanical and microstructural properties. The proposed research will include experiments related to the effect of FSW optimum process parameter on weldability of Al alloy. The present paper has been subdivided in to two different sections: 1. Study of Mechanical properties and 2. Study of micro-structural properties. Section1 describes the tensile strength of welded sample and distribution of microhardness in different zones of FSW weld specimen and section2 contains the microstructure characterization of different zones of friction stir welds.


2019 ◽  
Vol 969 ◽  
pp. 27-33
Author(s):  
K. Tejonadha Babu ◽  
S. Muthukumaran ◽  
C.H. Bharat Kumar ◽  
C. Sathiya Narayanan

Friction stir welding (FSW), a solid-state joining process is extensively using in the welding of aluminum alloy sheets. In order to save energy and reduce emission, lightweight materials like aluminum alloys were introduced into steel car body, which requires the development of effective joining processes. In the present study, welding was carried out in two different conditions, in the air (CFSW) and underwater (UWFSW) at various welding speeds to weld 5052-O aluminum alloy sheets. The effect of UWFSW on microstructural developments, mechanical properties, and formability was evaluated and compared. Grain refinement is an important opportunity to improve the mechanical properties of FS welds. Considerable grain refinement was obtained in UWFSW joints, which is smaller than that in the CFSW joints. The results indicated an increase in tensile strength, hardness, the percentage of elongation, and formability of UWFSW weld sheets. The results of the tensile test, hardness test, microstructure and fractography as in good correlation with improved properties.


Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6003
Author(s):  
Amir Ghiasvand ◽  
Mohammad Mahdi Yavari ◽  
Jacek Tomków ◽  
John William Grimaldo Guerrero ◽  
Hasan Kheradmandan ◽  
...  

The present study investigates the effect of two parameters of process type and tool offset on tensile, microhardness, and microstructure properties of AA6061-T6 aluminum alloy joints. Three methods of Friction Stir Welding (FSW), Advancing Parallel-Friction Stir Welding (AP-FSW), and Retreating Parallel-Friction Stir Welding (RP-FSW) were used. In addition, four modes of 0.5, 1, 1.5, and 2 mm of tool offset were used in two welding passes in AP-FSW and RP-FSW processes. Based on the results, it was found that the mechanical properties of welded specimens with AP-FSW and RP-FSW techniques experience significant increments compared to FSW specimens. The best mechanical and microstructural properties were observed in the samples welded by RP-FSW, AP-FSW, and FSW methods, respectively. Welded specimens with the RP-FSW technique had better mechanical properties than other specimens due to the concentration of material flow in the weld nugget and proper microstructure refinement. In both AP-FSW and RP-FSW processes, by increasing the tool offset to 1.5 mm, joint efficiency increased significantly. The highest weld strength was found for welded specimens by RP-FSW and AP-FSW processes with a 1.5 mm tool offset. The peak sample of the RP-FSW process (1.5 mm offset) had the closest mechanical properties to the base metal, in which the Yield Stress (YS), ultimate tensile strength (UTS), and elongation percentage (E%) were 76.4%, 86.5%, and 70% of base metal, respectively. In the welding area, RP-FSW specimens had smaller average grain size and higher hardness values than AP-FSW specimens.


2011 ◽  
Vol 418-420 ◽  
pp. 822-826
Author(s):  
Jia Feng Li ◽  
Xiao Gang Chen ◽  
Yong Gang Xu

The aim of present work is to investigate the mechanical and microstructural properties of dissimilar ADC12 and 6061 aluminium alloy joints produced by friction stir welding (FSW). The microstructure of joints has been observed by employing optical microscope. Furthermore, the welded joints have been tested under tension at room temperature in order to analyse their mechanical properties. At last, the scanning electron microscope (SEM) was employed to observe the specimens’ fracture morphology.


Sign in / Sign up

Export Citation Format

Share Document