scholarly journals Influence of the Synthesis Method on the Structural Characteristics of Novel Hybrid Adsorbents Based on Bentonite

2019 ◽  
Vol 3 (1) ◽  
pp. 18 ◽  
Author(s):  
Dariusz Sternik ◽  
Mariia Galaburda ◽  
Viktor Bogatyrov ◽  
Volodymyr Gun’ko

New hybrid composite materials were prepared by polymerization of resorcinol–formaldehyde resins in the presence of bentonite with various contents of polymer and water, and then exposed to pyrolysis in an inert atmosphere at 800 °C. The influence of the filler and synthesis method on the morphological, textural and structural characteristics has been described. The materials were characterized using low temperature nitrogen adsorption–desorption, small angle X-ray scattering, scanning electron microscopy, Raman spectroscopy, differential scanning calorimetry (DSC), and thermogravimetry analysis (TGA). The maximal values of the specific surface area of organo-bentonite and carbonized samples were 254 and 200 m2/g, respectively, which is much larger than that of the initial bentonite. The TGA and DSC experiments showed changes in the thermal stability of samples depending on their composition. The obtained data could provide a better understanding of the principles of preparing hybrid bentonite-containing composites that may provide an additional incentive to develop advanced technologies.

Author(s):  
Khezrollah Khezri ◽  
Moosa Ghasemi ◽  
Yousef Fazli

Abstract Mesoporous diatomite particles were employed to prepare different poly(styrene-co-butyl acrylate)/diatomite nanocomposites. Diatomite nanoplatelets were used for in situ copolymerization of styrene and butyl acrylate by SR&NI ATRP to synthesize well-defined poly(styrene-co-butyl acrylate) nanocomposites. Nitrogen adsorption/desorption isotherm is applied to examine surface area and structural characteristics of the diatomite nanoplatelets. Evaluation of pore size distribution and morphological studies were also performed by SEM and TEM. Conversion and molecular weight determinations were carried out using gas and size exclusion chromatography respectively. Addition of 3 wt% pristine mesoporous diatomite nanoplatelets leads to increase of conversion from 73 to 89%. Molecular weight of poly(styrene-co-butyl acrylate) chains increases from 17,115 to 20,343 g·mol−1 by addition of 3 wt% pristine mesoporous diatomite; however, polydispersity index values increases from 1.14 to 1.37. Increasing thermal stability of the nanocomposites is demonstrated by TGA. Differential scanning calorimetry shows an increase in glass transition temperature from 35.26 to 39.61°C by adding 3 wt% of mesoporous diatomite nanoplatelets.


2018 ◽  
Vol 33 (2) ◽  
pp. 180-197 ◽  
Author(s):  
Khezrollah Khezri ◽  
Yousef Fazli

Pristine mesoporous diatomite was employed to prepare polystyrene/diatomite composites. Diatomite platelets were used for in situ polymerization of styrene by atom transfer radical polymerization to synthesize tailor-made polystyrene nanocomposites. X-Ray fluorescence spectrometer analysis and thermogravimetric analysis (TGA) were employed for evaluating some inherent properties of pristine diatomite platelets. Nitrogen adsorption/desorption isotherm is applied to examine surface area and structural characteristics of the diatomite platelets. Evaluation of pore size distribution and morphological studies were also performed by scanning and transmission electron microscopy. Conversion and molecular weight determinations were carried out using gas and size exclusion chromatography, respectively. Linear increase of ln ( M0/M) with time for all the samples shows that polymerization proceeds in a living manner. Addition of 3 wt% pristine mesoporous diatomite leads to an increase of conversion from 72% to 89%. Molecular weight of polystyrene chains increases from 11,326 g mol−1 to 14134 g mol−1 with the addition of 3 wt% pristine mesoporous diatomite; however, polydispersity index values increases from 1.13 to 1.38. Increasing thermal stability of the nanocomposites is demonstrated by TGA. Differential scanning calorimetry shows an increase in glass transition temperature from 81.9°C to 87.1°C by adding 3 wt% of mesoporous diatomite platelets.


2017 ◽  
Vol 35 (7-8) ◽  
pp. 714-720 ◽  
Author(s):  
M Zienkiewicz-Strzałka ◽  
M Błachnio ◽  
A Deryło-Marczewska ◽  
RB Kozakevych ◽  
YM Bolbukh ◽  
...  

Silver-based nanomaterials and composites are important components in materials science and engineering due to the reactivity of silver nanophase based on exceptional surface effects. Ag-doped SiO2 nanocomposites were synthesized by wet impregnation procedure of aminopropyl-functionalized silica materials with submicrometer structure. Aminopropyl-functionalized pyrogenic silicon dioxide with amount of amino groups established as half and close to full monolayer was used to immobilize the nanosilver phase obtained from ammoniacal silver complex as a noble metal precursor. Pyrogenic silicon dioxide as an inexpensive nanostructured material with useful properties including adsorptive affinity for noble metal ions and organic macromolecules was applied as a support for diamminesilver(I) ions and finally for silver nanoparticles. In the present study, the effect of amino-functionalization and silver nanoparticles deposition was monitored by investigation of the textural properties and thermal stability of obtained nanocomposites. The properties of the nanocomposites were investigated by transmission electron microscopy, nitrogen adsorption–desorption isotherms, and thermal analysis (thermogravimetry/differential scanning calorimetry).


2018 ◽  
Vol 18 (5) ◽  
pp. 31-36
Author(s):  
Ngo Thi Thanh Hien ◽  
Pham Trung Kien ◽  
Nguyen Anh Vu ◽  
Pham Thanh Huyen

In this work, the mesoporous material Al-B-SBA-15 has been obtained by direct synthesis method with Si : B : Al ratio of 10 : 0.5 : 0.5. Wetness impregnation (WI) method was used to load platinum on Al-B-SBA-15. The prepared support and catalyst were characterized by nitrogen adsorption-desorption measurement (BET), XRD, TEM, and TPD-NH3 to investigate the influence of aluminium and boron on characteristics of the catalyst. The activity of the bifunctional catalyst was tested for hydrogenation of tetralin at 180–220 °C, hydrogen pressure of 1.5–2.5 MPa for 3 h.


2018 ◽  
Vol 9 ◽  
pp. 364-378 ◽  
Author(s):  
Mikhail F Butman ◽  
Nikolay L Ovchinnikov ◽  
Nikita S Karasev ◽  
Nataliya E Kochkina ◽  
Alexander V Agafonov ◽  
...  

We report on a new approach for the synthesis of TiO2-pillared montmorillonite, where the pillars exhibit a high degree of crystallinity (nanocrystals) representing a mixture of anatase and rutile phases. The structures exhibit improved adsorption and photocatalytic activity as a result of hydrothermally activated intercalation of titanium polyhydroxo complexes (i.e., TiCl4 hydrolysis products) in a solution with a concentration close to the sol formation limit. The materials, produced at various annealing temperatures from the intercalated samples, were characterized by infrared spectroscopy, differential scanning calorimetry (DSC)/thermogravimetric analysis (TGA), X-ray diffraction, dynamic light scattering (DLS) measurements, and liquefied nitrogen adsorption/desorption. The photocatalytic activity of the TiO2-pillared materials was studied using the degradation of anionic (methyl orange, MO) and cationic (rhodamine B, RhB) dyes in water under UV irradiation. The combined effect of adsorption and photocatalysis resulted in removal of 100% MO and 97.5% RhB (with an initial concentration of 40 mg/L and a photocatalyst-sorbent concentration of 1 g/L) in about 100 minutes. The produced TiO2-pillared montmorillonite showed increased photocatalytic activity as compared to the commercially available photocatalyst Degussa P25.


2021 ◽  
Vol 20 (3) ◽  
pp. 135-144
Author(s):  
Tomasz Bien

The paper describes the research on the method of production of granulated phase-change materials (PCM) used in construction industry for the accumulation of thermal energy. As mineral materials for the granules preparation zeolite from fly ash Na-P1 and natural diatomite dust were used which were impregnated with paraffinic filtration waste and granulated using a combined granulation method. Obtained granules were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), nitrogen adsorption/desorption isotherm, and differential scanning calorimetry (DSC). Mechanical strength of the materials was determined in a “drop strength” test. Performed analyses revealed that mineral composition and micromorphology of the diatomite and zeolite granules were varied, with zeolite granules having higher mechanical strength.


Materials ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 2847 ◽  
Author(s):  
Marta Goliszek ◽  
Beata Podkościelna ◽  
Olena Sevastyanova ◽  
Barbara Gawdzik ◽  
Artur Chabros

This work investigates the impact of lignin origin and structural characteristics, such as molecular weight and functionality, on the properties of corresponding porous biopolymeric microspheres obtained through suspension-emulsion polymerization of lignin with styrene (St) and/or divinylbenzene (DVB). Two types of kraft lignin, which are softwood (Picea abies L.) and hardwood (Eucalyptus grandis), fractionated by common industrial solvents, and related methacrylates, were used in the synthesis. The presence of the appropriate functional groups in the lignins and in the corresponding microspheres were investigated by attenuated total reflectance Fourier transform infrared spectroscopy (ATR/FT-IR), while the thermal properties were studied by differential scanning calorimetry (DSC). The texture of the microspheres was characterized using low-temperature nitrogen adsorption. The swelling studies were performed in typical organic solvents and distilled water. The shapes of the microspheres were confirmed with an optical microscope. The introduction of lignin into a St and/or DVB polymeric system made it possible to obtain highly porous functionalized microspheres that increase their sorption potential. Lignin methacrylates created a polymer network with St and DVB, whereas the unmodified lignin acted mainly as an eco-friendly filler in the pores of St-DVB or DVB microspheres. The incorporation of biopolymer into the microspheres could be a promising alternative to a modification of synthetic materials and a better utilization of lignin.


2018 ◽  
Vol 32 (2) ◽  
pp. 248-266 ◽  
Author(s):  
Khezrollah Khezri ◽  
Hassan Alijani ◽  
Yousef Fazli ◽  
Zahra Shariatinia

Mesoporous diatomite nanoplatelets were employed to prepare various poly (styrene-co-butyl acrylate)/diatomite nanocomposites by in situ reverse atom transfer radical polymerization of styrene and butyl acrylate. Fourier-transform infrared spectroscopy, thermogravimetric analysis (TGA), and nitrogen adsorption/desorption isotherm were employed for evaluating some properties of the pristine diatomite nanoplatelets. Evaluation of pore size distribution and morphological studies were also performed by scanning and transmission electron microscopy. Conversion and molecular weight determinations were carried out using gas and size exclusion chromatography, respectively. Addition of 3 wt% pristine mesoporous diatomite nanoplatelets leads to an increase in conversion from 77% to 92%. Molecular weight of poly (styrene-co-butyl acrylate) chains increases from 17,348 g mol−1 to 21,346 g mol−1 with the addition of 3 wt% pristine mesoporous diatomite nanoplatelets; however, polydispersity index values increases from 1.38 to 1.65. Increasing thermal stability of the nanocomposites is demonstrated by TGA. Differential scanning calorimetry shows an increase in glass transition temperature from 35.5°C to 39.4°C with the addition of 3 wt% mesoporous diatomite nanoplatelets.


2021 ◽  
Vol 4 (6(112)) ◽  
pp. 67-74
Author(s):  
Svitlana Kyrii ◽  
Tetiana Dontsova ◽  
Iryna Kosogina ◽  
Valeriia Podopryhor ◽  
Alla Serhiienko

The photocatalytic and physicochemical properties of titanium (IV) oxide modified by yttrium and niobium oxides were studied. It is shown that modification is a powerful way to increase the efficiency of catalysts' photocatalytic properties and improve the photocatalytic process as a whole. Commercial and laboratory-synthesized titanium (IV) oxides were used as catalysts for modification. Modification of titanium (IV) oxide powders in an amount of 1 wt. % by appropriate modifiers was performed by the hydrothermal method, after which they were characterized by diffraction and X-ray fluorescence methods. The structural characteristics of modified and non-modified titanium (IV) oxide samples by the method of low-temperature nitrogen adsorption-desorption have been studied. A slight increase in the specific surface area was found: from 61 m2/g to 70 m2/g for the commercial sample and from 172 m2/g to 180 m2/g for the synthesized one in this work. Similar dependencies are observed when studying the optical properties by the spectrophotometric method. Determination of surface properties (surface acidity) of modified and non-modified photocatalysts based on TiO2 showed different effects of modifiers on TiO2 acidity: in the modification by yttrium oxide, the acidity decreases, and in the case of niobium oxide – increases. Studies of photocatalytic and sorption activities with respect to dyes of different nature are not the same – the photocatalytic activity after modification increases, the sorption capacity with the cationic dye decreases, anionic – increases. Additional studies on dye destruction are in full accordance with photocatalytic and sorption experiments.


2007 ◽  
Vol 11 (02) ◽  
pp. 118-124 ◽  
Author(s):  
Mahtab Pirouzmand ◽  
Mostafa M. Amini ◽  
Nasser Safari

Metallophthalocyanines have been assembled in MCM-41 channels by microwave irradiation of a mixture of ion-exchanged MCM-41, and 1,2-dicyanobenzene under solvent-free conditions in a considerably short period of time. The prepared materials have been characterized by diffuse reflectance UV-vis spectroscopy, X-ray powder diffraction XRD, differential scanning calorimetry DSC, and Brunauer-Emmett-Teller BET nitrogen adsorption desorption techniques. The X-ray diffraction and Brunauer-Emmett-Teller results showed that the textural properties of MCM-41 were preserved during microwave irradiation.


Sign in / Sign up

Export Citation Format

Share Document