scholarly journals Simple Synthesis of NdFeO3 Nanoparticles By the Co-Precipitation Method Based on a Study of Thermal Behaviors of Fe (III) and Nd (III) Hydroxides

Crystals ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 219 ◽  
Author(s):  
Tien A. Nguyen ◽  
V. Pham ◽  
Thanh L. Pham ◽  
Linh T. Tr. Nguyen ◽  
I. Ya. Mittova ◽  
...  

In this study, a nanostructured NdFeO3 material was synthesized via a simple process of the hydrolysis of Nd (III) and Fe (III) cations in hot water with 5% NaOH as a precipitating agent. According to the results of the thermal behaviors of each hydroxide, either containing Fe (III) or Nd (III), the perovskite type of neodymium orthoferrite NdFeO3 was simply synthesized by annealing a mixture of Fe (III) and Nd (III) hydroxides at 750 °C. The nanostructured NdFeO3 was obtained in spherical granules with diameters of around 30 nm. The magnetic properties of the material were a coercive force (Hc) of 136.76 Oe, a remanent magnetization (Mr) of 0.68 emu·g–1, and a saturation magnetization (Ms) of 0.79 emu·g–1.

10.30544/612 ◽  
2021 ◽  
Vol 27 (3) ◽  
pp. 321-329
Author(s):  
Nguyen Anh Tien ◽  
Truong Chi Hien ◽  
Bùi Xuân Vương

Holmium orthoferrite HoFeO3 nanoparticles were synthesized by a simple co-precipitation method via the hydrolysis of Ho (III) and Fe (III) cations in boiling water with 5% aqueous ammonia solution. After annealing the precipitate at 750 and 850 °C for 1 hour, the single-phase HoFeO3 product formed with particle size < 50 nm. The synthesized nanopowders are paramagnetic materials with remanent magnetization Mr < 0.01 emu·g-1, the coercive force Hc = 20÷21 Oe, and magnetization Ms ~ 2.73 emu·g-1 at 300 K in a maximum field of 16,000 Oe.


Author(s):  
Pham Thi Hong Duyen ◽  
Anh Tien Nguyen

In this work, orthoferrite NdFeO3 nanomaterials with particle sizes 20-40 nm have been successfully synthesized via a simple co-precipitation method through the hydrolysis of Nd (III) and Fe (III) cations in hot water with 5% NaOH as a precipitating agent. Single-phase NdFeO3 was generated after calcination of the as-prepared powder at 700, 800, and 900 °C for 1 hour. The UV-Vis spectra at room temperature presented strong absorption in the UV-Vis regions (l = 200–400 nm and 400–600 nm) with small band gap energy (Eg = 2.2÷2.5 eV). The obtained NdFeO3 nanomaterials exhibited a hard ferromagnetic behavior with high coercivity (Hc = 600–1600 Oe).


Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 341
Author(s):  
Tien Hiep Nguyen ◽  
Gopalu Karunakaran ◽  
Yu.V. Konyukhov ◽  
Nguyen Van Minh ◽  
D.Yu. Karpenkov ◽  
...  

This paper presents the synthesis of Fe–Co–Ni nanocomposites by chemical precipitation, followed by a reduction process. It was found that the influence of the chemical composition and reduction temperature greatly alters the phase formation, its structures, particle size distribution, and magnetic properties of Fe–Co–Ni nanocomposites. The initial hydroxides of Fe–Co–Ni combinations were prepared by the co-precipitation method from nitrate precursors and precipitated using alkali. The reduction process was carried out by hydrogen in the temperature range of 300–500 °C under isothermal conditions. The nanocomposites had metallic and intermetallic phases with different lattice parameter values due to the increase in Fe content. In this paper, we showed that the values of the magnetic parameters of nanocomposites can be controlled in the ranges of MS = 7.6–192.5 Am2/kg, Mr = 0.4–39.7 Am2/kg, Mr/Ms = 0.02–0.32, and HcM = 4.72–60.68 kA/m by regulating the composition and reduction temperature of the Fe–Co–Ni composites. Due to the reduction process, drastic variations in the magnetic features result from the intermetallic and metallic face formation. The variation in magnetic characteristics is guided by the reduction degree, particle size growth, and crystallinity enhancement. Moreover, the reduction of the surface spins fraction of the nanocomposites under their growth induced an increase in the saturation magnetization. This is the first report where the influence of Fe content on the Fe–Co–Ni ternary system phase content and magnetic properties was evaluated. The Fe–Co–Ni ternary nanocomposites obtained by co-precipitation, followed by the hydrogen reduction led to the formation of better magnetic materials for various magnetically coupled device applications.


2018 ◽  
Vol 44 (17) ◽  
pp. 20782-20789 ◽  
Author(s):  
Rohit R. Powar ◽  
Varsha D. Phadtare ◽  
Vinayak G. Parale ◽  
Hyung-Ho Park ◽  
Sachin Pathak ◽  
...  

2018 ◽  
Vol 56 (1) ◽  
pp. 31
Author(s):  
Luong Thi Quynh Anh ◽  
Nguyen Van Dan ◽  
Do Minh Nghiep

The crystalline nanoparticles of Ni0.2Zn0.8Fe2O4 ferrite were synthesized by chemical co-precipitation with precursor concentration of 0.1M, then modified by 0.25M solution of oleic acid in pentanol, finally heated at temperatures 120, 140, 160 and 180oC for 6h in autoclave. The XRD, EDS and TEM confirmed that all of samples are crystalline and their particle size are 6, 6.5, 7 and 8 nm. The magnetic properties showed that the coercive force, the remanence of samples are about zero, the saturation magnetization Ms has values from 14.20 to 27.12 emu/g.


2010 ◽  
Vol 322 (21) ◽  
pp. 3470-3475 ◽  
Author(s):  
Yue Zhang ◽  
Zhi Yang ◽  
Di Yin ◽  
Yong Liu ◽  
ChunLong Fei ◽  
...  

2019 ◽  
Vol 546 (1) ◽  
pp. 48-56
Author(s):  
Ze Wu ◽  
Yang Song ◽  
Ruonan Zhang ◽  
Lianwei Shan ◽  
Limin Dong ◽  
...  

2015 ◽  
Vol 1094 ◽  
pp. 15-19
Author(s):  
Lin Xia Yan ◽  
Sen Lin Tian ◽  
Qiu Lin Zhang

Cu-Al catalysts were synthesized by the co-precipitation method to study hydrolysis of hydrogen cyanide. During the synthesis, the impact of Cu/Al molar ratio, pH value and calcination temperature was investigated and the best synthesis condition was found. The results indicate that the remove of hydrogen cyanide first increases and then decreases with increasing Cu/Al molar ratio, pH value and calcination temperature, which reaches the maxima and remains above 95% at 360 min when Cu/Al molar ratio is 2:1, pH value is approximately 8.0 and calcination temperature is 400°C around. The analysis of X-ray diffraction (XRD) shows that Cu content is the main influence factor at Cu/Al molar ratio below 2:1 whereas crystallinity of catalysts is the key factor at Cu/Al molar ratio above 2:1.


2015 ◽  
Vol 1101 ◽  
pp. 286-289 ◽  
Author(s):  
Maya Rahmayanti ◽  
Sri Juari Santosa ◽  
Sutarno

Gallic acid-modified magnetites were synthesized by one and two-step reactions via the newly developed sonochemical co-precipitation method. The two-step reaction included the formation of magnetite powder and mixing the magnetite powder with gallic acid solution, while the one-step reaction did not go through the formation magnetite powder. The obtained gallic acid-modified magnetites were characterized by the Fourier Transform Infrared (FTIR) spectroscopy, the X-Ray Diffraction (XRD) and the Scanning Electron Microscopy (SEM). More over, the magnetic properties were studied by using a Vibrating Sample Magnetometer (VSM). The characterization results showed that there were differences in crystalinity, surface morphology and magnetic properties of products that were formed by one and two-step reactions.


Sign in / Sign up

Export Citation Format

Share Document