scholarly journals Comparison of Material Properties of SCC Concrete with Steel Fibres Related to Ingress of Chlorides

Crystals ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 220 ◽  
Author(s):  
Petr Lehner ◽  
Petr Konečný ◽  
Tomasz Ponikiewski

The paper focuses on the evaluation of chloride ion diffusion coefficient of self-compacting concrete with steel fibre reinforcement. The reference concrete from Ordinary Portland Cement (OPC) and Self-Compacting Concrete (SCC) with several values of added steel fibres—0%, 1% and 2% of weight—were cast in order to investigate the effect of fibres. The three procedures of diffusion coefficient calculation are presented—rapid chloride penetration test, accelerated penetration tests with chloride as well as the surface measurement of electrical resistivity using Wenner probe. The resulting diffusion coefficients obtained by all methods are compared and evaluated regarding the basic mechanical properties of concrete mixtures.

2020 ◽  
Vol 310 ◽  
pp. 00015 ◽  
Author(s):  
Marie Hornakova ◽  
Petr Konecny ◽  
Petr Lehner ◽  
Jacek Katzer

While examination of the durability of ordinary concrete mixtures is of interest of many research groups, only limited amount of information is available in terms of lightweight concrete tested under the same conditions. In this case, the durability related to the chloride ion diffusion is investigated on the relatively new type of structural lightweight concrete, which, above all, contains waste material – red ceramics sand, and artificial expanded clay coarse aggregate. Used aggregates were fully soaked before adding into the concrete mixture, so also the internal curing effect is considered in terms of the degradation process. Cylindrical specimens made of plain concrete matrix and with added fibre in various percentage quantities were tested to examine the durability of the mixture by measuring the electrical resistivity. The results are compared to the findings from a similar project. The paper deals with aspects influencing the results of chloride diffusion in concrete.


2011 ◽  
Vol 324 ◽  
pp. 340-343
Author(s):  
Abdelaziz Benmarce ◽  
Hocine Boudjehem ◽  
Robila Bendjhaiche

Abstract. Self compacting concrete (SCC) seem to be a very promising materials for construction thanks to their properties in a fresh state. Studying of the influence of the parameters of specific designed mixes to their mechanical, physical and chemical characteristics in a state hardened is an important stage so that it can be useful for new-to-the-field researchers and designers (worldwide) beginning studies and work involving self compacting concrete. The objective of this research is to study the durability of self compacting concrete. The durability of concrete depends very much on the porosity; the latter determines the intensity of interactions with aggressive agents. The pores inside of concrete facilitate the process of damage, which began generally on the surface. We are interested to measure the porosity of concrete on five SCC with different compositions (w/c, additives) and vibrated concrete to highlight the influence of the latter on the porosity, thereafter on the compressive strength and the transfer properties (oxygen permeability, chloride ion diffusion, capillary absorption).


2014 ◽  
Vol 629-630 ◽  
pp. 351-357
Author(s):  
Chen Huang ◽  
Wen Ying Guo ◽  
Yi Bo Yang ◽  
Hui Zhao ◽  
Zhen Jie Li ◽  
...  

Chloride resistant HPC and protective cover are two basic measurements to improve the durability of concrete in chloride environment. Though it provides crucial cover for concrete to resist chloride ions, spacer has limited chloride resistant ability, which is overlooked by past researchers. Cementitious spacers are easy access for chloride ions to penetrate into concrete resulting in reduction of structural durability. To improve cementitious spacers’ performance, a systematic study was conducted. Test results showed that there was major difference between mortar and concrete in terms of chloride coulomb electric flux but minor difference in terms of chloride ion diffusion coefficient, which implied using chloride ion diffusion coefficient as spacer’s durability indicator was preferable; parameters of mix design had a similar influence on mortar and concrete and, with the same mixing parameters, the strength and chloride resistant ability of mortar were weaker than concrete’s; it was feasible to develop the mix design of chloride resistant cementitious spacers based on concrete’s design method with certain adjustments, such as using stricter mix proportion, adding small-size coarse aggregate, lowering water-binder ratio and optimizing the binder proportion, to achieve higher strength and durability.


2011 ◽  
Vol 90-93 ◽  
pp. 2798-2802
Author(s):  
Zu Quan Jin ◽  
Qi Chang Zhuang ◽  
Jie Lin

Chloride ion ingression into concrete under flexural load is investigated in the paper. Concrete specimens have been stored in 3.5%NaCl solution or 3.5%NaCl + 5%Na2SO4 solution for 210 days. The effect of flexural load and sulfate ion to chloride ion transmission is studied. The experimental results show that sulfate ion reduces chloride ion transmission in concrete. But when concrete under flexural load, Sulfate ion has plus and minus effect on chloride ion ingression into concrete. When the flexural load rate is low, sulfate ion reduces chloride ion transmission. But the flexural load is high, the negative effect of sulfate corrosion plays a main role. When concrete exposed to 3.5%NaCl+5%Na2SO4 solution, chloride ion diffusion coefficient of concrete in tensile zone increases with flexural load. And in compressive zone, the chloride diffusion coefficient decreases first and then raises with increasing flexural load.


2016 ◽  
Vol 78 (11) ◽  
Author(s):  
Juli Asni Lamide ◽  
Roslli Noor Mohamed ◽  
Ahmad Baharuddin Abd Rahman

This paper presents an experimental test program that was carried out to investigate the shear performance of steel fibre self-compacting concrete (SFSCC) beams. In this paper, the mechanical performance of results from all mixtures used to cast normal concrete (NC), self-compacting concrete (SCC) and steel fibre self-compacting concrete (SFSCC) were also investigated. In total, 27 cubes, 9 cylinders, 9 prisms and 9 beams were prepared for the assessment of mechanical properties of three different mixtures. Four beams (125 mm x 250 mm x 2200 mm) were tested and cast using three different concrete mixtures, having two different spacing of stirrups as a result of 50% reduction of the stirrups amount. Three beams with different mixtures having similar stirrups spacing 125mm while the fourth beam with SFSCC mixes having 250mm stirrups spacing. The results show that the mechanical properties were positively affected with steel fibres inclusion. The addition of steel fibres showed an increment up to 40% in the shear load capacity for B-SFSCC125 compared to B-NC125 and B-SCC125.  In addition, the crack pattern of B-SFSCC was found better than B-NC and B-SCC.   


Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5675
Author(s):  
Changhyuck Lim ◽  
Gyuyong Kim ◽  
Gyeongtae Kim ◽  
Bokyeong Lee ◽  
Youngduck Kim ◽  
...  

Wave power marine concrete structures generate electrical energy using waves. They are exposed to a multi-deterioration environment because of air and hydrostatic pressure and chloride attack. In this study, the effect of air pressure repeatedly generated by water level change of wave power marine concrete structures on the chloride-ion diffusion of marine concrete was analyzed. The chloride-ion diffusion of wave power marine concrete structures was evaluated. The results show that the air chamber and bypass room, which were subjected to repetitive air pressures caused by water level changes, showed a higher water-soluble chloride-ion content compared to the generator room and docking facility, which were subjected to atmospheric pressure. Field exposure tests and indoor chloride attack tests were performed using fabricated specimens to analyze the effect of pressure on chloride-ion penetration. It was confirmed that Portland blast furnace slag had a greater inhibitory effect on chloride-ion penetration than ordinary Portland cement. The concrete specimens subjected to pressure showed increased capillary pores and micro-cracks. We devised an equation for calculating the diffusion coefficient based on measured data and estimating the diffusion coefficient for the location receiving repeated air pressure by using the diffusion coefficient of the location receiving general atmospheric pressure.


Materials ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 5717
Author(s):  
Xiaokang Cheng ◽  
Jianxin Peng ◽  
C.S. Cai ◽  
Jianren Zhang

The existence of axial and lateral compressive stress affect the diffusion of chloride ions in concrete will lead to the performance degradation of concrete structure. This paper experimentally studied the chloride diffusivity properties of uniaxial and biaxial sustained compressive stress under one-dimensional chloride solution erosion. The influence of different sustained compressive stress states on chloride ion diffusivity is evaluated by testing chloride concentration in concrete. The experiment results show that the existence of sustained compressive stress does not always inhibit the diffusion of chloride ions in concrete, and the numerical value of sustained compressive stress level can affect the diffusion law of chloride ions in concrete. It is found that the chloride concentration decreases most when the lateral compressive stress level is close to 0.15 times the compressive strength of concrete. In addition, the sustained compressive stress has a significant effect on chloride ion diffusion of concrete with high water/cement ratio. Then, the chloride diffusion coefficient model under uniaxial and biaxial sustained compressive stress is established based on the apparent chloride diffusion coefficient. Finally, the results demonstrate that the chloride diffusion coefficient model is reasonable and feasible by comparing the experimental data in the opening literature with the calculated values from the developed model.


2013 ◽  
Vol 405-408 ◽  
pp. 2639-2643
Author(s):  
Van Tuan Le ◽  
Yong Lai Zheng ◽  
Shu Xin Deng

In order to estimate the impact of the degree of water saturation of concrete to chloride ion diffusion coefficient, the experimental setup allows to measure chloride diffusion coefficient through nonsaturated concrete specimens with controlled degree of water saturated. The different degrees of water saturation of concrete specimens were obtained, by using saturated solutions of NaCl and KCl controlling the relative humidity, then applied Rapid Cloride Permeability Test method to measure the cloride diffusion coefficient. The test results show that chloride diffusion coefficient depends strongly on the degree of water saturation of concrete. Beside, this relationship shows the non-linear relationship, in which, chloride diffusion coefficient reachs the maximum value in fully saturated concrete specimens.


Sign in / Sign up

Export Citation Format

Share Document