scholarly journals Plasmonic Hydrogel Nanocomposites with Combined Optical and Mechanical Properties for Biochemical Sensing

2021 ◽  
Vol 5 (1) ◽  
pp. 34
Author(s):  
Bruno Miranda ◽  
Rosalba Moretta ◽  
Selene De Martino ◽  
Principia Dardano ◽  
Ilaria Rea ◽  
...  

Localized surface plasmon resonance (LSPR) and metal-enhanced-fluorescence (MEF)-based optical biosensors exhibit unique properties compared to other sensing devices that can be exploited for the design point-of-care (POC) diagnostic tools [1]. Plasmonic devices exploit the capability of noble-metal nanoparticles of absorbing light at a well-defined wavelength. The increasing request for wearable, flexible and easy-to-use diagnostic tools has brought to the development of plasmonic nanocomposites, whose peculiar performances arise from the combination of the optical properties of plasmonic nanoparticles and mechanical properties of the polymeric matrix in which they are embedded [2,3]. An optical platform based on spherical gold nanoparticles (AuNPs) embedded in high molecular weight poly-(ethylene glycol) diacrylate (PEGDA) hydrogel is proposed. PEGDA hydrogel represents a biocompatible, flexible, transparent polymeric network to design wearable, 3D, plasmonic biosensors for the detection of targets with different molecular weights for the early diagnosis of disease. The swelling capability of PEGDA is directly correlated to the plasmonic decoupling of AuNPs embedded within the matrix. A study on the effect of swelling on the optical response of the PEGDA/AuNPs composites was investigated by using a biorecognition layer/target model system. Specifically, after the in situ chemical modification of the AuNPs within the hydrogel, the interaction biotin-streptavidin is monitored within the 3D hydrogel network. Additionally, metal-enhanced fluorescence is observed within the PEGDA/AuNPs nanocomposites, which can be exploited to achieve an ultra-low limit of detection. LSPR signal was monitored via transmission mode customized setup and MEF signal was detected via fluorescence and confocal microscopes. Label-free (LSPR-based) and fluorescence (MEF-based) signals of a high molecular weight target analyte were successfully monitored with relatively high resolutions and low limits of detection compared to the standard polymeric optical platforms available in the literature. The optimized platform could represent a highly reproducible and low-cost novel biosensor to be applied as a POC diagnostic tool in healthcare and food monitoring applications.

Polymers ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 404
Author(s):  
Nur Sharmila Sharip ◽  
Hidayah Ariffin ◽  
Tengku Arisyah Tengku Yasim-Anuar ◽  
Yoshito Andou ◽  
Yuki Shirosaki ◽  
...  

The major hurdle in melt-processing of ultra-high molecular weight polyethylene (UHMWPE) nanocomposite lies on the high melt viscosity of the UHMWPE, which may contribute to poor dispersion and distribution of the nanofiller. In this study, UHMWPE/cellulose nanofiber (UHMWPE/CNF) bionanocomposites were prepared by two different blending methods: (i) melt blending at 150 °C in a triple screw kneading extruder, and (ii) non-melt blending by ethanol mixing at room temperature. Results showed that melt-processing of UHMWPE without CNF (MB-UHMWPE/0) exhibited an increment in yield strength and Young’s modulus by 15% and 25%, respectively, compared to the Neat-UHMWPE. Tensile strength was however reduced by almost half. Ethanol mixed sample without CNF (EM-UHMWPE/0) on the other hand showed slight decrement in all mechanical properties tested. At 0.5% CNF inclusion, the mechanical properties of melt-blended bionanocomposites (MB-UHMWPE/0.5) were improved as compared to Neat-UHMWPE. It was also found that the yield strength, elongation at break, Young’s modulus, toughness and crystallinity of MB-UHMWPE/0.5 were higher by 28%, 61%, 47%, 45% and 11%, respectively, as compared to the ethanol mixing sample (EM-UHMWPE/0.5). Despite the reduction in tensile strength of MB-UHMWPE/0.5, the value i.e., 28.4 ± 1.0 MPa surpassed the minimum requirement of standard specification for fabricated UHMWPE in surgical implant application. Overall, melt-blending processing is more suitable for the preparation of UHMWPE/CNF bionanocomposites as exhibited by their characteristics presented herein. A better mechanical interlocking between UHMWPE and CNF at high temperature mixing with kneading was evident through FE-SEM observation, explains the higher mechanical properties of MB-UHMWPE/0.5 as compared to EM-UHMWPE/0.5.


Polymers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2018
Author(s):  
Muhammad Samsuri ◽  
Ihsan Iswaldi ◽  
Purba Purnama

Stereocomplexation is one of several approaches for improving polylactide (PLA) properties. The high molecular weight of poly L-lactide (PLLA) and poly D-lactide (PDLA) homopolymers are a constraint during the formation of stereocomplex PLAs (s-PLAs). The presence of s-PLA particles in PLA PLLA/PDLA blends can initiate the formation of s-PLA crystalline structures. We used the solution casting method to study the utilization of s-PLA materials from high molecular weight PLLA/PDLA blends for increasing s-PLA formation. The s-PLA particles initiated the formation of high molecular weight PLLA/PDLA blends, obtaining 49.13% s-PLA and 44.34% of the total crystalline fraction. In addition, the mechanical properties were enhanced through s-PLA crystalline formation and the increasing of total crystallinity of the PLLA/PDLA blends. The s-PLA particles supported initiation for s-PLA formation and acted as a nucleating agent for PLA homopolymers. These unique characteristics of s-PLA particles show potential to overcome the molecular weight limitation for stereocomplexation of PLLA/PDLA blends.


2013 ◽  
Vol 341 ◽  
pp. 169-180 ◽  
Author(s):  
A.M. Abdul-Kader ◽  
Y.A. El-Gendy ◽  
Awad A. Al-Rashdi ◽  
A.M. Salem

The effect of ion beam bombardment on the optical and mechanical properties of ultra-high molecular weight polyethylene (UHMWPE) was investigated. UHMWPE polymer samples were bombarded with 150 keV N2ions under vacuum at room temperature to high fluences ranging from 1x1016to 2x1017ions cm-2. The untreated as well as treated samples were investigated by ultraviolet-visible (UV-Vis) spectrophotometer and Vickers micro-hardness techniques. The direct and indirect optical band gap decreased from 2.9 and 1.65 eV for pristine sample to 1.7 and 1 eV for those bombarded with N2ion beam at the highest fluence, respectively. With increasing ion fluence, an increase in the number of carbon atoms per conjugation length, N and number of carbon atoms per cluster, M in a formed cluster were observed. A significant improvement in surface hardness was obtained by increasing the ion fluence.


RSC Advances ◽  
2016 ◽  
Vol 6 (90) ◽  
pp. 87013-87020 ◽  
Author(s):  
Kaiju Luo ◽  
Yan Wang ◽  
Junrong Yu ◽  
Jing Zhu ◽  
Zuming Hu

Aromatic furanic polyamides with relatively high molecular weight were synthesized, and good thermal stability and mechanical properties were demonstrated.


2004 ◽  
Vol 77 (2) ◽  
pp. 380-390
Author(s):  
Wonmun Choi ◽  
Tomoyuki Matsumura

Abstract The reactions of dichloroalkanes and sodium tetra-sulfide (Na2S4) were carried out in a mixture of water and toluene to produce corresponding cyclic polysulfides and polysulfide polymer. The low molecular weights of cyclic sulfides were obtained by the reaction at 90 °C, while the high molecular weight of polysulfide polymer was obtained by the reaction at 50 °C. GPC chromatograms and Mass spectra revealed that the structures of cyclic polysulfide were 1:1, 2:2, and 3:3 adducts of dichloroalkane and sodium tetra-sulfide. The mechanical properties of vulcanized NR at 148 °C with cyclic sulfides were similar to that with sulfur. However, both tensile strength and elongation at break of vulcanized NR at 170 °C with cyclic sulfides are much higher than that with sulfur. The aging properties of vulcanized NR at 148 °C or 170 °C with cyclic polysulfides indicate better stability.


Sign in / Sign up

Export Citation Format

Share Document