scholarly journals Biotic and Abiotic Factors Associated with Colonies Mortalities of Managed Honey Bee (Apis mellifera)

Diversity ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 237 ◽  
Author(s):  
Boyko Neov ◽  
Ani Georgieva ◽  
Rositsa Shumkova ◽  
Georgi Radoslavov ◽  
Peter Hristov

Despite the presence of a large number of pollinators of flowering plants worldwide, the European honey bee, Apis melifera, plays the most important role in the pollination of a number of crops, including all vegetables, non-food crops and oilseed crops, decorative and medical plants, and others. The experience of isolated cases of complete extinction of honey bees in individual regions has shown that this phenomenon leads to a dramatic pollination crisis and reduced ability or even total inability to grow insect-pollinated crops if relying solely on native, naturally occurring pollinators. Current scientific data indicate that the global bee extinction between the Cretaceous and the Paleogene (Cretaceous-Tertiary) occurred, which led to the disappearance of flowers because they could not produce viable fruit and germinate due to lack of pollination by bees or other animals. From the Middle Ages to the present day, there has been evidence that honey bees have always overcome the adverse factors affecting them throughout the ages, after which their population has fully recovered. This fact must be treated with great care given the emergence of a new, widespread stress factor in the second half of the 20th century—intoxication of beehives with antibiotics and acaricides, and treatment of crops with pesticides. Along with acute and chronic intoxication of bees and bee products, there are other new major stressors of global importance reducing the number of bee colonies: widespread prevalence of pathogenic organisms and pest beetles, climate change and adverse climatic conditions, landscape changes and limitation of natural habitats, intensification of agricultural production, inadequate nutrition, and introduction of invasive species. This report summarizes the impact of individual negative factors on the health and behavior of bees to limit the combined effects of the above stressors.

Author(s):  
Nikolaj Dobrzinskij ◽  
Algimantas Fedaravicius ◽  
Kestutis Pilkauskas ◽  
Egidijus Slizys

Relevance of the article is based on participation of armed forces in various operations and exercises, where reliability of machinery is one of the most important factors. Transportation of soldiers as well as completion of variety of tasks is ensured by properly functioning technical equipment. Reliability of military vehicles – armoured SISU E13TP Finnish built and HMMWV M1025 USA built were selected as the object of the article. Impact of climatic conditions on reliability of the vehicles exploited in southwestern part of the Atlantic continental forest area is researched by a case study of the vehicles exploitation under conditions of the climate of Lithuania. Reliability of military vehicles depends on a number of factors such as properties of the vehicles and external conditions of their operation. Their systems and mechanisms are influenced by a number of factors that cause different failures. Climatic conditions represent one of the factors of operating load which is directly dependent on the climate zone. Therefore, assessment of the reliability is started with the analysis of climatic factors affecting operating conditions of the vehicles. Relationship between the impact of climatic factors and failure flow of the vehicles is presented and discussed.


Animals ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 178
Author(s):  
Roksana Kruszakin ◽  
Paweł Migdal

So far, larval rearing in vitro has been an important method in the assessment of bee toxicology, particularly in pesticide risk assessment. However, natural products are increasingly used to control honey bee pathogens or to enhance bee immunity, but their effects on honey bee larvae are mostly unknown. In this study, laboratory studies were conducted to determine the effects of including selected aqueous plant infusions in the diet of honey bee (Apis mellifera L.) larvae in vitro. The toxicity of infusions from three different plant species considered to be medicinal plants was evaluated: tansy (Tanacetum vulgare L.), greater celandine (Chelidonium majus L.), and coriander (Coriandrum sativum L.). The impact of each on the survival of the larvae of honey bees was also evaluated. One-day-old larvae were fed a basal diet consisting of distilled water, sugars (glucose and fructose), yeast extract, and freeze-dried royal jelly or test diets in which distilled water was replaced by plant infusions. The proportion of the diet components was adjusted to the age of the larvae. The larvae were fed twice a day. The experiment lasted seven days. Significant statistical differences in survival rates were found between groups of larvae (exposed or not to the infusions of tansy, greater celandine, and coriander). A significant decrease (p < 0.05) in the survival rate was observed in the group with the addition of a coriander herb infusion compared to the control. These results indicate that plant extracts intended to be used in beekeeping should be tested on all development stages of honey bees.


1959 ◽  
Vol 39 (4) ◽  
pp. 505-511 ◽  
Author(s):  
P. Pankiw ◽  
C. R. Elliott

Pollination studies involving zero, one and three colonies of honey bees per acre, on commercial alsike clover fields ranging in size from 15 to 75 acres, were conducted in 1954, 1955, and 1957 in the Hinton Trail district of the Peace River Region of Alberta. These studies indicated that in large fields one colony of honey bees per acre is sufficient to pollinate alsike clover, consideration being given to competition of other crops and to the climatic conditions. The influence of competing crops was such that 65- to 75-acre fields, with one colony per acre, were similar in honey bee populations and seed production to 15- to 20-acre fields with three colonies per acre. Competing plant species accounted for 15 to 36 per cent of the pollen collected by honey bees. Fields with the higher populations of pollinators matured earlier than fields deficient in pollinators. A population of 3400 honey bees per acre (0.7 bee per sq. yd.) throughout the flowering period resulted in seed sets up to 82 per cent and seed yields to 375 lb. per acre. Check fields, where no honey bees were supplied, ranged in production from 29 lb. per acre, with a low native pollinator count, to 293 lb. where a pollinator equivalent of 1300 bumble bees per acre was observed. Bumble bees worked alsike clover at the rate of 28.6 florets per minute, as compared to 20.0 for leaf-cutter bees and 18.7 for honey bees.


2021 ◽  
Author(s):  
Kilea Ward ◽  
Hongmei Li-Byarlay

Molecular damage caused by oxidative stress may lead to organismal aging and resulted in acute mortality in organisms. Oxidative stress resistance and longevity are closely linked. Honey bees are the most important managed pollinator in agriculture but the long-term survival of honey bees is seriously threatened. Feral honey bee colonies displayed persistence to Varroa mites. However, it is unknown whether feral honey bees are stress-resistant or survive longer than managed bee populations. More work is needed to determine the impact of oxidative stress on honey bee health and survival. We used the paired colony design to determine the lifespan and levels of oxidative stress on worker bees from either a feral or a managed colony. Each pair of colonies shared similar foraging resources. Results exhibit longer survival time and lifespans of foragers in feral colonies than the managed colonies. The levels of oxidative stress from the lipid damage of feral colonies are higher than the managed colonies, indicating a tolerant mechanism not a repair mechanism to survive. Our study provided new insights into colony difference of physiology and oxidative stress resistance between feral honey bees and commercial stocks.


2018 ◽  
Vol 5 (1) ◽  
pp. 86-94 ◽  
Author(s):  
Darina Bachvarova ◽  
Aleksandar Doichinov ◽  
Rayme Abdulova

AbstractThe article presents the results of a study of the soil surface seasonal activity of two species of julidae, widely spread in the Balkan Peninsula: Leptoiulus trilineatus (C.L. Koch, 1847) and Megaphyllum trassylvanicum (Verhoeff, 1897). The material was collected by means of pitfall traps between May 2007 and May 2009 in natural and urban habitats exposed to varying degrees of anthropogenic pressure. In the study period 1474 specimens of L. trilineatus and 618 specimens of M. transsylvanicum were collected. The impact of the soil and air temperature and humidity on the seasonal activity of both species was measured through statistical analysis. The statistical data processing was conducted using SPSS 9.0 and StatPlus 3.5.3 software packages.L. trilineatus and M. trassylvanicum are polytopic, mesophilic and mesotermic species with year-round activity in the studied area. There is no statistically significant correlation between the degree of anthropogenic impact and the activity of the two species.Leptoiulus trilineatus shows equal preference for both urban and natural habitats in the studied area. The species demonstrates the typical of all millipedes bimodal activity, which is the highest in spring and the beginning of winter – in the periods from March to May and from November to December. The coefficients of correlation dependence of L. trilineatus activity on the tested abiotic environmental factors are not statistically significant. The Pearson-Brave coefficient which measures the effect of soil humidity on species activity is 0.417, which shows a positive correlation. M. trassylvanicum has the highest frequency in urban biotops such as parks in the urban and suburban areas of Shumen and in the coniferous habitats on the Shumen Plateau. In this area the species demonstrates its highest activity in spring and summer (from February to July). The abiotic factors with statistically significant effect on the soil surface activity of M. trassylvanicum are the soil and air temperature – the values of the Pearson-Brave correlation coefficients are 0.708 and 0.586 respectively.


2019 ◽  
Author(s):  
Mert Kükrer ◽  
Meral Kence ◽  
Aykut Kence

Intense admixture of honey bee (Apis mellifera L.) populations is mostly attributed to migratory beekeeping practices and replacement of queens and colonies with non-native races or hybrids of different subspecies. These two practices are also heavily carried out in Anatolia and Thrace where 5 subspecies reside naturally.Here, we carried out an analysis of population structure of honey bees sampled from six different regions (n = 250) in order to test the genetic impacts of migratory beekeeping, queen and colony trade and conservation efficacy of isolated regions. A total of 30 microsatellite markers were used in four multiplex reactions.Direct genetic impact of migratory beekeeping was demonstrated first time based on a comparison of assignment of individuals to their geographically native populations where migratory colonies showed less fidelity. We found genetic evidence for them acting as a hybrid zone mobile in space and time, becoming vectors of otherwise local gene combinations.The effects of honey bee trade were revealed by the presence of very high introgression levels from the highly commercial Caucasian bees naturally limited to a narrow range. We also measured the direction and magnitude of this gene flow connected with bee trade.Comparison between regions that are either open to migratory beekeeping or not let us evaluate the status of isolated regions as centers of limited gene flow and showed the importance of establishing such regions.Despite signs of gene flow, our findings confirm high levels of geographically structured genetic diversity of four subspecies of honey bees in Turkey and emphasize the need to develop policies to maintain this diversity.Our overall results might potentially bear a wider interest to the community since they constitute an important attempt to quantify the effects of anthropogenic impacts on established patterns of honey bee diversity. Our measurable and justified findings on migratory beekeeping, queen and colony replacements as well as conservation implications will hopefully be of use for the decision makers and other stakeholders.


2020 ◽  
Vol 4 (3) ◽  
pp. 131-135
Author(s):  
Wali Muhammad ◽  
Khadija Javed ◽  
Humayun Javed ◽  
Munir Ahmad ◽  
Muhammad Azam Khan

Brinjal (Solanum melongena L.) is the most important vegetable crop in the Asia Pacific region, with Pakistan being the seventh largest producer. There are many biotic and abiotic factors affecting its production in terms of quantity and quality including insect pests as a significant constraint. In Pakistan, the brinjal shoot and fruit borer, Leucinodes orbonalis is the major insect pest of brinjal. However, some other chewing and sap-sucking insects are also essential pests. Bt-brinjal, a transgenic variety, has been introduced in India and Bangladesh for the management of lepidopteran pests. Before the commercialization of transgenic brinjal in Pakistan, it must be assessed for its effects on the environment and non-target organisms. This study is presenting the overview of transgenic brinjal as an option to manage brinjal shoot and fruit borer along with current and future challenges in areas of its commercialization.


1979 ◽  
Vol 111 (10) ◽  
pp. 1131-1135 ◽  
Author(s):  
R.H. Elliott ◽  
D. Cmiralova ◽  
W.G. Wellington

AbstractForaging honey bees were offered various sucrose–herbicide solutions. Despite the visual attractiveness of the feeding dishes to foragers, six of seven herbicides significantly reduced the incidence of feeding and were judged to be olfactory and gustatory repellents. The most repellent herbicide was 2,4,5-T, which totally inhibited feeding at concentrations as tow as 1000 ppm. The next most repellent was 2,4-DB, followed by linuron, picloram, 2,4-D, and monuron. Paraquat was the only herbicide that did not exhibit marked repellency at concentrations up to 4000 ppm.The implications of these findings are discussed in terms of the impact of herbicide applications on honey bee foraging behaviour, brood development, pollination, and honey production.


2018 ◽  
Vol 84 (13) ◽  
Author(s):  
Kasie Raymann ◽  
Erick V. S. Motta ◽  
Catherine Girard ◽  
Ian M. Riddington ◽  
Jordan A. Dinser ◽  
...  

ABSTRACT Accumulating evidence suggests that pesticides have played a role in the increased rate of honey bee colony loss. One of the most commonly used pesticides in the United States is the neonicotinoid imidacloprid. Although the primary mode of action of imidacloprid is on the insect nervous system, it has also been shown to cause changes in insects' digestive physiology and alter the microbiota of Drosophila melanogaster larvae. The honey bee gut microbiome plays a major role in bee health. Although many studies have shown that imidacloprid affects honey bee behavior, its impact on the microbiome has not been fully elucidated. Here, we investigated the impact of imidacloprid on the gut microbiome composition, survivorship, and susceptibility to pathogens of honey bees. Consistent with other studies, we show that imidacloprid exposure results in an elevated mortality of honey bees in the hive and increases the susceptibility to infection by pathogens. However, we did not find evidence that imidacloprid affects the gut bacterial community of honey bees. Our in vitro experiments demonstrated that honey bee gut bacteria can grow in the presence of imidacloprid, and we found some evidence that imidacloprid can be metabolized in the bee gut environment. However, none of the individual bee gut bacterial species tested could metabolize imidacloprid, suggesting that the observed metabolism of imidacloprid within in vitro bee gut cultures is not caused by the gut bacteria. Overall, our results indicate that imidacloprid causes increased mortality in honey bees, but this mortality does not appear to be linked to the microbiome. IMPORTANCE Growing evidence suggests that the extensive use of pesticides has played a large role in the increased rate of honey bee colony loss. Despite extensive research on the effects of imidacloprid on honey bees, it is still unknown whether it impacts the community structure of the gut microbiome. Here, we investigated the impact of imidacloprid on the gut microbiome composition, survivorship, and susceptibility to pathogens of honey bees. We found that the exposure to imidacloprid resulted in an elevated mortality of honey bees and increased the susceptibility to infection by opportunistic pathogens. However, we did not find evidence that imidacloprid affects the gut microbiome of honey bees. We found some evidence that imidacloprid can be metabolized in the bee gut environment in vitro , but because it is quickly eliminated from the bee, it is unlikely that this metabolism occurs in nature. Thus, imidacloprid causes increased mortality in honey bees, but this does not appear to be linked to the microbiome.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zih-Ting Chang ◽  
Yu-Feng Huang ◽  
Yue-Wen Chen ◽  
Ming-Ren Yen ◽  
Po-Ya Hsu ◽  
...  

AbstractDeformed wing virus (DWV) prevalence is high in honey bee (Apis mellifera) populations. The virus infects honey bees through vertical and horizontal transmission, leading to behavioural changes, wing deformity, and early mortality. To better understand the impacts of viral infection in the larval stage of honey bees, artificially reared honey bee larvae were infected with DWV (1.55 × 1010 copies/per larva). No significant mortality occurred in infected honey bee larvae, while the survival rates decreased significantly at the pupal stage. Examination of DWV replication revealed that viral replication began at 2 days post inoculation (d.p.i.), increased dramatically to 4 d.p.i., and then continuously increased in the pupal stage. To better understand the impact of DWV on the larval stage, DWV-infected and control groups were subjected to transcriptomic analysis at 4 d.p.i. Two hundred fifty-five differentially expressed genes (DEGs) (fold change ≥ 2 or ≤ -2) were identified. Of these DEGs, 168 genes were downregulated, and 87 genes were upregulated. Gene Ontology (GO) analysis showed that 141 DEGs (55.3%) were categorized into molecular functions, cellular components and biological processes. One hundred eleven genes (38 upregulated and 73 downregulated) were annotated by KO (KEGG Orthology) pathway mapping and involved metabolic pathways, biosynthesis of secondary metabolites and glycine, serine and threonine metabolism pathways. Validation of DEGs was performed, and the related gene expression levels showed a similar tendency to the DEG predictions at 4 d.p.i.; cell wall integrity and stress response component 1 (wsc1), cuticular protein and myo-inositol 2-dehydrogenase (iolG) were significantly upregulated, and small conductance calcium-activated potassium channel protein (SK) was significantly downregulated at 4 d.p.i. Related gene expression levels at different d.p.i. revealed that these DEGs were significantly regulated from the larval stage to the pupal stage, indicating the potential impacts of gene expression levels from the larval to the pupal stages. Taken together, DWV infection in the honey bee larval stage potentially influences the gene expression levels from larvae to pupae and reduces the survival rate of the pupal stage. This information emphasizes the consequences of DWV prevalence in honey bee larvae for apiculture.


Sign in / Sign up

Export Citation Format

Share Document