scholarly journals Proposal of De Novo Antigen Test for COVID-19: Ultrasensitive Detection of Spike Proteins of SARS-CoV-2

Diagnostics ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 594 ◽  
Author(s):  
Yuta Kyosei ◽  
Mayuri Namba ◽  
Sou Yamura ◽  
Rikiya Takeuchi ◽  
Noriko Aoki ◽  
...  

Polymerase chain reaction (PCR)-based antigen tests are technically difficult, time-consuming, and expensive, and may produce false negative results requiring follow-up confirmation with computed tomography. The global coronavirus disease 2019 (COVID-19) pandemic has increased the demand for accurate, easy-to-use, rapid, and cost-effective antigen tests for clinical application. We propose a de novo antigen test for diagnosing COVID-19 using the combination of sandwich enzyme-linked immunosorbent assay and thio-nicotinamide adenine dinucleotide (thio-NAD) cycling. Our test takes advantage of the spike proteins specific to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus. The limit of detection of our test was 2.3 × 10−18 moles/assay. If the virus has ~25 spike proteins on its surface, our method should detect on the order of 10−20 moles of virus/assay, corresponding to ~104 copies of the virus RNA/assay. The detection sensitivity approaches that of PCR-based assays because the average virus RNA load used for PCR-based assays is ~105 copies per oro- or naso-pharyngeal swab specimen. To our knowledge, this is the first ultrasensitive antigen test for SARS-CoV-2 spike proteins that can be performed with an easy-to-use microplate reader. Sufficient sensitivity can be achieved within 10 min of thio-NAD cycling. Our antigen test allows for rapid, cost-effective, specific, ultrasensitive, and simultaneous multiple measurements of SARS-CoV-2, and has broad application for the diagnosis for COVID-19.

2021 ◽  
Vol 9 (11) ◽  
pp. 2214
Author(s):  
Yuta Kyosei ◽  
Mayuri Namba ◽  
Daiki Makioka ◽  
Ayumi Kokubun ◽  
Satoshi Watabe ◽  
...  

To help control the global pandemic of coronavirus disease 2019 (COVID-19), we developed a diagnostic method targeting the spike protein of the virus that causes the infection, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We applied an ultrasensitive method by combining a sandwich enzyme-linked immunosorbent assay (ELISA) and the thio-nicotinamide adenine dinucleotide (thio-NAD) cycling reaction to quantify spike S1 proteins. The limit of detection (LOD) was 2.62 × 10−19 moles/assay for recombinant S1 proteins and 2.6 × 106 RNA copies/assay for ultraviolet B-inactivated viruses. We have already shown that the ultrasensitive ELISA for nucleocapsid proteins can detect ultraviolet B-inactivated viruses at the 104 RNA copies/assay level, whereas the nucleocapsid proteins of SARS-CoV-2 are difficult to distinguish from those in conventional coronaviruses and SARS-CoV. Thus, an antigen test for only the nucleocapsid proteins is insufficient for virus specificity. Therefore, the use of a combination of tests against both spike and nucleocapsid proteins is recommended to increase both the detection sensitivity and testing accuracy of the COVID-19 antigen test. Taken together, our present study, in which we incorporate S1 detection by combining the ultrasensitive ELISA for nucleocapsid proteins, offers an ultrasensitive, antigen-specific test for COVID-19.


Antibiotics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 298
Author(s):  
Alexander Ecke ◽  
Rudolf J. Schneider

Contamination of waters with pharmaceuticals is an alarming problem as it may support the evolution of antimicrobial resistance. Therefore, fast and cost-effective analytical methods for potential on-site analysis are desired in order to control the water quality and assure the safety of its use as a source of drinking water. Antibody-based methods, such as the enzyme-linked immunosorbent assay (ELISA), can be helpful in this regard but can also have certain pitfalls in store, depending on the analyte. As shown here for the class of β-lactam antibiotics, hydrolysis of the β‑lactam ring is a key factor in the immunochemical analysis as it influences antibody recognition. With the antibody used in this study, the limit of detection (LOD) in the immunoassay could be significantly reduced by hydrolysis for the five tested penicillins, with the lowest LOD for carbenicillin (0.2 nmol/L) and the greatest impact on penicillins G and V (reduction by 85%). In addition to enhanced quantification, our strategy also provides access to information about the degree of hydrolysis in water samples as shown for the most abundant penicillin amoxicillin.


2021 ◽  
Vol 271 ◽  
pp. 03067
Author(s):  
Xiaohong He ◽  
Zhihong Song ◽  
Haifei Shang ◽  
Silang Yang ◽  
Lujing Wu ◽  
...  

Currently, the laboratory diagnostic tests available for HIV-1 viral infection are mainly based on serological testing which relies on enzyme-linked immunosorbent assay (ELISA) for blood HIV antigen detection and reverse transcription polymerase chain reaction (RT-PCR) for HIV specific RNA sequence identification. However, these methods are expensive and time-consuming, and suffer from false positive and/or false negative results. Thus, there is an urgent need for developing a cost effective, rapid and accurate diagnostic method for HIV-1 infection. In order to reduce the barriers for effective diagnosis, a near-infrared spectroscopy (NIR) method was used to detect the HIV-1 virus in human serum, specifically, three absorption peaks with dose-dependent at 1582nm, 1810nm and 2363nm were found by multiple FBiPLSR test analysis for HIV-nano and HIV-EGFP, but not for MLV. Therefore, we recommend the use of 1582nm, 1810nm and 2363nm as the characteristic spectrum peak, for early screening and rapid diagnosis of serum HIV.


2021 ◽  
Author(s):  
Gangqi Wang ◽  
Fengjie Zhu ◽  
Tingting Lang ◽  
Jianjun Liu ◽  
Zhi Hong ◽  
...  

Abstract In this paper, a terahertz (THz) biosensor based on all-metal metamaterial is theoretically investigated and experimentally verified. This THz metamaterial biosensor uses stainless steel materials that are manufactured via laser-drilling technology. The simulation results show that the maximum refractive index (RI) sensitivity and the figure of merit (FOM) of this metamaterial sensor are 294.95 GHz/RIU and 4.03, respectively. Then, bovine serum albumin (BSA) was chosen as the detection substance to assess this biosensor’s effectiveness. The experiment results show that the detection sensitivity is 72.81 GHz/(ng/mm2) and the limit of detection (LOD) is 0.035 mg/mL. This THz metamaterial biosensor is simple, cost-effective, easy to fabricate, and have great potential in various biosensing applications.


2021 ◽  
Author(s):  
Cong Ji ◽  
Junbin Jack Shao

To improve the quality of nucleic acid detection reagents, we provided a new strategy, Shine, to explore specific, sensitive and conserved biomarkers from massive microbial genomic data within intrapopulations in order to improve detection sensitivity and accuracy. It is obvious that the more comprehensive genomic data are, the more effective the detection biomarkers. Here, we demonstrated that our method could detect undiscovered multicopy conserved species-specific or even subspecies-specific target fragments, according to several clinical projects. In particular, this approach was effective for any pathogenic microorganism even in incompletely assembled motifs. Based on our strategy, the detection device designed with quantitative PCR primers and probes for systematic and automated detection of pathogenic microorganisms in biological samples may cover all pathogenic microorganisms without limits based on genome annotation. On the website https://bioinfo.liferiver.com.cn, users may select different configuration parameters depending on the purpose of the project to realize routine clinical detection practices. Therefore, it is recommended that our strategy is suitable to identify shared universal phylogenetic markers with few false positive or false negative errors and to automate the design of minimal primers and probes to detect pathogenic communities with cost-effective predictive power.


Author(s):  
Renfei Lu ◽  
Jian Wang ◽  
Min Li ◽  
Yaqi Wang ◽  
Jia Dong ◽  
...  

SummaryBackgroundSARS-CoV-2 nucleic acid detection by RT-PCR is one of the criteria approved by China FDA for diagnosis of COVID-19. However, inaccurate test results (for example, high false negative rate and some false positive rate) were reported in both China and US CDC using RT-PCR method. Inaccurate results are caused by inadequate detection sensitivity of RT-PCR, low viral load in some patients, difficulty to collect samples from COVID-19 patients, insufficient sample loading during RT-PCR tests, and RNA degradation during sample handling process. False negative detection could subject patients to multiple tests before diagnosis can be made, which burdens health care system. Delayed diagnosis could cause infected patients to miss the best treatment time window. False negative detection could also lead to prematurely releasing infected patients who still carry residual SARS-CoV-2 virus. In this case, these patients could infect many others. A high sensitivity RNA detection method to resolve the existing issues of RT-PCR is in need for more accurate COVID-19 diagnosis.MethodsDigital PCR (dPCR) instrument DropX-2000 and assay kits were used to detect SARS-CoV-2 from 108 clinical specimens from 36 patients including pharyngeal swab, stool and blood from different days during hospitalization. Double-blinded experiment data of 108 clinical specimens by dPCR methods were compared with results from officially approved RT-PCR assay. A total of 109 samples including 108 clinical specimens and 1 negative control sample were tested in this study. All of 109 samples, 26 were from 21patients reported as positive by officially approved clinical RT-PCR detection in local CDC and then hospitalized in Nantong Third Hospital. Among the 109 samples, dPCR detected 30 positive samples on ORFA1ab gene, 47 samples with N gene positive, and 30 samples with double positive on ORFA1ab and N genes.ResultsThe lower limit of detection of the optimize dPCR is at least 10-fold lower than that of RT-PCR. The overall accuracy of dPCR for clinical detection is 96.3%. 4 out 4 of (100 %) negative pharyngeal swab samples checked by RT-PCR were positive judged by dPCR based on the follow-up investigation. 2 of 2 samples in the RT-PCR grey area (Ct value > 37) were confirmed by dPCR with positive results. 1 patient being tested positive by RT-PCR was confirmed to be negative by dPCR. The dPCR results show clear viral loading decrease in 12 patients as treatment proceed, which can be a useful tool for monitoring COVID-19 treatment.ConclusionsDigital PCR shows improved lower limit of detection, sensitivity and accuracy, enabling COVID-19 detection with less false negative and false positive results comparing with RT-PCR, especially for the tests with low viral load specimens. We showed evidences that dPCR is powerful in detecting asymptomatic patients and suspected patients. Digital PCR is capable of checking the negative results caused by insufficient sample loading by quantifying internal reference gene from human RNA in the PCR reactions. Multi-channel fluorescence dPCR system (FAM/HEX/CY5/ROX) is able to detect more target genes in a single multiplex assay, providing quantitative count of viral load in specimens, which is a powerful tool for monitoring COVID-19 treatment.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
John G. Routsias ◽  
Maria Mavrouli ◽  
Panagiota Tsoplou ◽  
Kyriaki Dioikitopoulou ◽  
Athanasios Tsakris

AbstractThe most widely used test for the diagnosis of SARS-CoV-2 infection is a PCR test. PCR has very high sensitivity and is able to detect very low amounts of RNA. However, many individuals receiving a positive test result in a context of a PCR-based surveillance might be infected with SARS-CoV-2, but they are not contagious at the time of the test. The question arises regards if the cost effective, portable rapid antigen tests (RATs) have a better performance than PCR in identification of infectious individuals. In this direction, we examined the diagnostic performance of RATs from 14 different manufacturers in 400 clinical samples with known rRT-PCR cycles threshold (cT) and 50 control samples. Substantial variability was observed in the limit of detection (LOD) of different RATs (cT = 26.8–34.7). The fluorescence-based RAT exhibited a LOD of cT = 34.7. The use of the most effective RATs leads to true positive rates (sensitivities) of 99.1% and 90.9% for samples with cT ≤ 30 and cT ≤ 33, respectively, percentages that can guarantee a sensitivity high enough to identify contagious patients. RAT testing may also substantially reduce the quarantine period for infected individuals without compromising personal or public safety.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Runkai Hu ◽  
Keitaro Sou ◽  
Shinji Takeoka

Abstract The enzyme-linked immunosorbent assay (ELISA) is widely used in various fields to detect specific biomarkers. However, ELISA tests have limited detection sensitivity (≥ 1 pM), which is insufficiently sensitive for the detection of small amounts of biomarkers in the early stages of disease or infection. Herein, a method for the rapid and highly sensitive detection of specific antigens, using temperature-responsive liposomes (TLip) containing a squaraine dye that exhibits fluorescence at the phase transition temperature of the liposomes, was developed. A proof-of-concept study using biotinylated TLip and a streptavidin-immobilized microwell plate showed that the TLip bound to the plate via specific molecular recognition could be distinguished from unbound TLip within 1 min because of the difference in the heating time required for the fluorescence emission of TLip. This system could be used to detect prostate specific antigen (PSA) based on a sandwich immunosorbent assay using detection and capture antibodies, in which the limit of detection was as low as 27.6 ag/mL in a 100-μL PSA solution, 0.97 aM in terms of molar concentration. The present temperature-responsive liposome-linked immunosorbent assay provides an advanced platform for the rapid and highly sensitive detection of biomarkers for use in diagnosis and biological inspections.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Youhee Heo ◽  
Kwanwoo Shin ◽  
Min Cheol Park ◽  
Ji Yoon Kang

AbstractThis report suggests a method of enhancing the sensitivity of chemifluorescence-based ELISA, using photooxidation-induced fluorescence amplification (PIFA). The PIFA utilized autocatalytic photooxidation of the chemifluorescent substrate, 10-acetyl 3,7-dihydroxyphenoxazine (ADHP, Amplex Red) to amplify the fluorescent product resorufin, initially oxidized by horse radish peroxidase (HRP). As the amplification rate is proportional to the initial level of resorufin, the level of antigen labeled by HRP is quantified by analyzing the profile of fluorescence intensity. The normalized profile was interpolated into an autocatalysis model, and the rate of increase at half-maximum time was quantified by the use of an amplification index (AI). The lower limit of detection, for resorufin or HRP, was less than one-tenth that of the plate reader. It requires only slight modification of the fluorescence reader and is fully compatible with conventional or commercial ELISA. When it is applied to a commercial ELISA kit for the detection of amyloid beta, it is verified that the PIFA assay enhanced the detection sensitivity by more than a factor of 10 and was compatible with a conventional 96-well ELISA assay kit. We anticipate this PIFA assay to be used in research for the detection of low levels of proteins and for the early diagnosis of various diseases with rare protein biomarkers, at ultra-low (pg/mL) concentrations.


Author(s):  
Kanako Iha ◽  
Mikio Inada ◽  
Naoki Kawada ◽  
Kazunari Nakaishi ◽  
Satoshi Watabe ◽  
...  

For the diagnosis of disease, the ability to quantitatively detect trace amounts of the causal proteins from bacteria/viruses as biomarkers in patient specimens is highly desirable. Here we introduce a simple, rapid, and colorimetric assay as a de novo, ultrasensitive detection method. This ultrasensitive assay consists of sandwich enzyme-linked immunosorbent assay (ELISA) and thionicotinamide-adenine dinucleotide (thio-NAD) cycling, forming an ultrasensitive ELISA, in which the signal substrate (i.e., thio-NADH) accumulates in a triangular manner, and the accumulated thio-NADH is measured at its maximum absorption wavelength of 400 nm. We have successfully achieved a limit of detection of ca. 10–18 moles/assay for a target protein. As an example of infectious disease detection, HIV-1 p24 could be measured at 0.0065 IU/assay (i.e., 10−18 moles/assay), and as a marker for a lifestyle-related disease, adiponectin could be detected at 2.3 × 10−19 moles/assay. In particular, despite the long-held belief that the trace amounts of adiponectin in urine can only be detected using a radioisotope, our ultrasensitive ELISA was able to detect urinary adiponectin. This method is highly versatile, because simply changing the antibody enables the detection of various proteins. This assay system requires only the measurement of absorbance, thus it requires equipment that is easily obtained by medical facilities, which facilitates diagnosis in hospitals and clinics. Moreover, we describe an expansion of our ultrasensitive ELISA to a non-amplification nucleic acid detection method for nucleic acids using hybridization. These de novo methods will enable simple, rapid, and accurate diagnosis.


Sign in / Sign up

Export Citation Format

Share Document