scholarly journals Robustness of Laser Speckles as Unique Traceable Markers of Metal Components

Digital ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 54-63
Author(s):  
Mikael Sjödahl ◽  
Erik Olsson

The traceability of manufactured components is growing in importance with the greater use of digital service solutions offered and with an increased digitalization of manufacturing logistics. In this paper, we investigate the use of image-plane laser speckles as a tool to acquire a unique code from the surface of the component and the ability to use this pattern as a secure component-specific digital fingerprint. Intensity correlation is used as a numerical identifier. Metal sheets of different materials and steel pipes are considered. It is found that laser speckles are robust against surface alterations caused by surface compression and scratching and that the correct pattern reappears from a surface contaminated by oil after cleaning. In this investigation, the detectability is close to 100% for all surfaces considered, with zero false positives. The exception is a heavily oxidized surface wiped by a cotton cloth between recordings. It is further found that the main source for lost detectability is caused by misalignment between the registration and detection geometries where a positive match is lost by a change in angle in the order of 60 mrad. Therefore, as long as the registration and detection systems, respectively, use the same optical arrangement, laser speckles have the ability to serve as unique component identifiers without having to add extra markings or a dedicated sensor to the component.

2019 ◽  
Vol 40 (8/9) ◽  
pp. 496-502
Author(s):  
Afaf Abu Sirhan ◽  
Khalid Mohamad Abdrabbo ◽  
Serhan Ahmed Ali Al Tawalbeh ◽  
Mustafa Hamdi Ahmed ◽  
Mohammad Ali Helalat

Purpose The purpose of this paper is to illustrate some methods to protect digital libraries using digital rights management (DRM) technologies and specifically the methods applied at the digital libraries of Jordan universities. Design/methodology/approach A descriptive research method has been used to examine the extent of DRM in digital libraries of universities in Jordan. Findings Majority of the universities in Jordan use different methods of protection including coding, identification, authenticity and digital watermark. However, methods including digital signature, digital fingerprint, copy detection systems and pay system have not been employed within Jordanian universities. The use of copyright management systems has been limited, which shows the weakness in the use of technological protection within the investigated libraries. Originality/value This study has shown contribution to the development of digital libraries that are based on the protection of new technology and are able to provide better services to users without concern about protecting publishers’ rights.


Author(s):  
A. V. Crewe

If the resolving power of a scanning electron microscope can be improved until it is comparable to that of a conventional microscope, it would serve as a valuable additional tool in many investigations.The salient feature of scanning microscopes is that the image-forming process takes place before the electrons strike the specimen. This means that several different detection systems can be employed in order to present information about the specimen. In our own particular work we have concentrated on the use of energy loss information in the beam which is transmitted through the specimen, but there are also numerous other possibilities (such as secondary emission, generation of X-rays, and cathode luminescence).Another difference between the pictures one would obtain from the scanning microscope and those obtained from a conventional microscope is that the diffraction phenomena are totally different. The only diffraction phenomena which would be seen in the scanning microscope are those which exist in the beam itself, and not those produced by the specimen.


Author(s):  
John C. Russ

Three-dimensional (3D) images consisting of arrays of voxels can now be routinely obtained from several different types of microscopes. These include both the transmission and emission modes of the confocal scanning laser microscope (but not its most common reflection mode), the secondary ion mass spectrometer, and computed tomography using electrons, X-rays or other signals. Compared to the traditional use of serial sectioning (which includes sequential polishing of hard materials), these newer techniques eliminate difficulties of alignment of slices, and maintain uniform resolution in the depth direction. However, the resolution in the z-direction may be different from that within each image plane, which makes the voxels non-cubic and creates some difficulties for subsequent analysis.


Author(s):  
E. L. Buhle ◽  
U. Aebi

CTEM brightfield images are formed by a combination of relatively high resolution elastically scattered electrons and unscattered and inelastically scattered electrons. In the case of electron spectroscopic images (ESI), the inelastically scattered electrons cause a loss of both contrast and spatial resolution in the image. In the case of ESI imaging on the Zeiss EM902, the transmited electrons are dispersed into their various energy components by passing them through a magnetic prism spectrometer; a slit is then placed in the image plane of the prism to select the electrons of a given energy loss for image formation. The purpose of this study was to compare CTEM with ESI images recorded on a Zeiss EM902 of ordered protein arrays. Digital image processing was employed to analyze the average unit cell morphologies of the two types of images.


Author(s):  
Bridget Carragher ◽  
David A. Bluemke ◽  
Michael J. Potel ◽  
Robert Josephs

We have investigated the feasibility of restoring blurred electron micrographs. Two related problems have been considered; the restoration of images blurred as a result of relative motion between the specimen and the image plane, and the restoration of images which are rotationally blurred about an axis. Micrographs taken while the specimen is drifting result in images which are blurred in the direction of motion. An example of rotational blurring arises in micrographs of thin sections of helical particles viewed in cross section. The twist of the particle within the finite thickness of the section causes the image to appear rotationally blurred about the helical axis. As a result, structural details, particularly at large distances from the helical axis, will be obscured.


Author(s):  
B.G. Frost ◽  
D.C. Joy ◽  
L.F. Allard ◽  
E. Voelkl

A wide holographic field of view (up to 15 μm in the Hitachi-HF2000) is achieved in a TEM by switching off the objective lens and imaging the sample by the first intermediate lens. Fig.1 shows the corresponding ray diagram for low magnification image plane off-axis holography. A coherent electron beam modulated by the sample in its amplitude and its phase is superimposed on a plane reference wave by a negatively biased Möllenstedt-type biprism.Our holograms are acquired utilizing a Hitachi HF-2000 field emission electron microscope at 200 kV. Essential for holography are a field emission gun and an electron biprism. At low magnification, the excitation of each lens must be appropriately adjusted by the free lens control mode of the microscope. The holograms are acquired by a 1024 by 1024 slow-scan CCD-camera and processed by the “Holoworks” software. The hologram fringes indicate positively and negatively charged areas in a sample by the direction of the fringe bending (Fig.2).


Author(s):  
H. Lin ◽  
D. P. Pope

During a study of mechanical properties of recrystallized B-free Ni3Al single crystals, regularly spaced parallel traces within individual grains were discovered on the surfaces of thin recrystallized sheets, see Fig. 1. They appeared to be slip traces, but since we could not find similar observations in the literature, a series of experiments was performed to identify them. We will refer to them “traces”, because they contain some, if not all, of the properties of slip traces. A variety of techniques, including the Electron Backscattering Pattern (EBSP) method, was used to ascertain the composition, geometry, and crystallography of these traces. The effect of sample thickness on their formation was also investigated.In summary, these traces on the surface of recrystallized Ni3Al have the following properties:1.The chemistry and crystallographic orientation of the traces are the same as the bulk. No oxides or other second phases were observed.2.The traces are not grooves caused by thermal etching at previous locations of grain boundaries.3.The traces form after recrystallization (because the starting Ni3Al is a single crystal).4.For thicknesses between 50 μm and 720 μm, the density of the traces increases as the sample thickness decreases. Only one set of “protrusion-like” traces is visible in a given grain on the thicker samples, but multiple sets of “cliff-like” traces are visible on the thinner ones (See Fig. 1 and Fig. 2).5.They are linear and parallel to the traces of {111} planes on the surface, see Fig. 3.6.Some of the traces terminate within the interior of the grains, and the rest of them either terminate at or are continuous across grain boundaries. The portion of latter increases with decreasing thickness.7.The grain size decreases with decreasing thickness, the decrease is more pronounced when the grain size is comparable with the thickness, Fig. 4.8.Traces also formed during the recrystallization of cold-rolled polycrystalline Cu thin sheets, Fig. 5.


Author(s):  
W.F. Marshall ◽  
K. Oegema ◽  
J. Nunnari ◽  
A.F. Straight ◽  
D.A. Agard ◽  
...  

The ability to image cells in three dimensions has brought about a revolution in biological microscopy, enabling many questions to be asked which would be inaccessible without this capability. There are currently two major methods of three dimensional microscopy: laser-scanning confocal microscopy and widefield-deconvolution microscopy. The method of widefield-deconvolution uses a cooled CCD to acquire images from a standard widefield microscope, and then computationally removes out of focus blur. Using such a scheme, it is easy to acquire time-lapse 3D images of living cells without killing them, and to do so for multiple wavelengths (using computer-controlled filter wheels). Thus, it is now not only feasible, but routine, to perform five dimensional microscopy (three spatial dimensions, plus time, plus wavelength).Widefield-deconvolution has several advantages over confocal microscopy. The two main advantages are high speed of acquisition (because there is no scanning, a single optical section is acquired at a time by using a cooled CCD camera) and the use of low excitation light levels Excitation intensity can be much lower than in a confocal microscope for three reasons: 1) longer exposures can be taken since the entire 512x512 image plane is acquired in parallel, so that dwell time is not an issue, 2) the higher quantum efficiently of a CCD detect over those typically used in confocal microscopy (although this is expected to change due to advances in confocal detector technology), and 3) because no pinhole is used to reject light, a much larger fraction of the emitted light is collected. Thus we can typically acquire images with thousands of photons per pixel using a mercury lamp, instead of a laser, for illumination. The use of low excitation light is critical for living samples, and also reduces bleaching. The high speed of widefield microscopy is also essential for time-lapse 3D microscopy, since one must acquire images quickly enough to resolve interesting events.


Author(s):  
W. Coene ◽  
A. Thust ◽  
M. Op de Beeck ◽  
D. Van Dyck

Compared to conventional electron sources, the use of a highly coherent field-emission gun (FEG) in TEM improves the information resolution considerably. A direct interpretation of this extra information, however, is hampered since amplitude and phase of the electron wave are scrambled in a complicated way upon transfer from the specimen exit plane through the objective lens towards the image plane. In order to make the additional high-resolution information interpretable, a phase retrieval procedure is applied, which yields the aberration-corrected electron wave from a focal series of HRTEM images (Coene et al, 1992).Kirkland (1984) tackled non-linear image reconstruction using a recursive least-squares formalism in which the electron wave is modified stepwise towards the solution which optimally matches the contrast features in the experimental through-focus series. The original algorithm suffers from two major drawbacks : first, the result depends strongly on the quality of the initial guess of the first step, second, the processing time is impractically high.


Sign in / Sign up

Export Citation Format

Share Document