scholarly journals How to Utilize My App Reviews? A Novel Topics Extraction Machine Learning Schema for Strategic Business Purposes

Entropy ◽  
2020 ◽  
Vol 22 (11) ◽  
pp. 1310
Author(s):  
Ioannis Triantafyllou ◽  
Ioannis C. Drivas ◽  
Georgios Giannakopoulos

Acquiring knowledge about users’ opinion and what they say regarding specific features within an app, constitutes a solid steppingstone for understanding their needs and concerns. App review utilization helps project management teams to identify threads and opportunities for app software maintenance, optimization and strategic marketing purposes. Nevertheless, app user review classification for identifying valuable gems of information for app software improvement, is a complex and multidimensional issue. It requires foresight and multiple combinations of sophisticated text pre-processing, feature extraction and machine learning methods to efficiently classify app reviews into specific topics. Against this backdrop, we propose a novel feature engineering classification schema that is capable to identify more efficiently and earlier terms-words within reviews that could be classified into specific topics. For this reason, we present a novel feature extraction method, the DEVMAX.DF combined with different machine learning algorithms to propose a solution in app review classification problems. One step further, a simulation of a real case scenario takes place to validate the effectiveness of the proposed classification schema into different apps. After multiple experiments, results indicate that the proposed schema outperforms other term extraction methods such as TF.IDF and χ2 to classify app reviews into topics. To this end, the paper contributes to the knowledge expansion of research and practitioners with the purpose to reinforce their decision-making process within the realm of app reviews utilization.

Biology ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 365
Author(s):  
Taha ValizadehAslani ◽  
Zhengqiao Zhao ◽  
Bahrad A. Sokhansanj ◽  
Gail L. Rosen

Machine learning algorithms can learn mechanisms of antimicrobial resistance from the data of DNA sequence without any a priori information. Interpreting a trained machine learning algorithm can be exploited for validating the model and obtaining new information about resistance mechanisms. Different feature extraction methods, such as SNP calling and counting nucleotide k-mers have been proposed for presenting DNA sequences to the model. However, there are trade-offs between interpretability, computational complexity and accuracy for different feature extraction methods. In this study, we have proposed a new feature extraction method, counting amino acid k-mers or oligopeptides, which provides easier model interpretation compared to counting nucleotide k-mers and reaches the same or even better accuracy in comparison with different methods. Additionally, we have trained machine learning algorithms using different feature extraction methods and compared the results in terms of accuracy, model interpretability and computational complexity. We have built a new feature selection pipeline for extraction of important features so that new AMR determinants can be discovered by analyzing these features. This pipeline allows the construction of models that only use a small number of features and can predict resistance accurately.


Author(s):  
NOJUN KWAK

In many pattern recognition problems, it is desirable to reduce the number of input features by extracting important features related to the problems. By focusing on only the problem-relevant features, the dimension of features can be greatly reduced and thereby can result in a better generalization performance with less computational complexity. In this paper, we propose a feature extraction method for handling classification problems. The proposed algorithm is used to search for a set of linear combinations of the original features, whose mutual information with the output class can be maximized. The mutual information between the extracted features and the output class is calculated by using the probability density estimation based on the Parzen window method. A greedy algorithm using the gradient descent method is used to determine the new features. The computational load is proportional to the square of the number of samples. The proposed method was applied to several classification problems, which showed better or comparable performances than the conventional feature extraction methods.


2021 ◽  
pp. 1-15
Author(s):  
Mohammed Ayub ◽  
El-Sayed M. El-Alfy

Web technology has become an indispensable part in human’s life for almost all activities. On the other hand, the trend of cyberattacks is on the rise in today’s modern Web-driven world. Therefore, effective countermeasures for the analysis and detection of malicious websites is crucial to combat the rising threats to the cyber world security. In this paper, we systematically reviewed the state-of-the-art techniques and identified a total of about 230 features of malicious websites, which are classified as internal and external features. Moreover, we developed a toolkit for the analysis and modeling of malicious websites. The toolkit has implemented several types of feature extraction methods and machine learning algorithms, which can be used to analyze and compare different approaches to detect malicious URLs. Moreover, the toolkit incorporates several other options such as feature selection and imbalanced learning with flexibility to be extended to include more functionality and generalization capabilities. Moreover, some use cases are demonstrated for different datasets.


2021 ◽  
Vol 11 (11) ◽  
pp. 1525
Author(s):  
Maham Saeidi ◽  
Waldemar Karwowski ◽  
Farzad V. Farahani ◽  
Krzysztof Fiok ◽  
Redha Taiar ◽  
...  

Electroencephalography (EEG) is a non-invasive technique used to record the brain’s evoked and induced electrical activity from the scalp. Artificial intelligence, particularly machine learning (ML) and deep learning (DL) algorithms, are increasingly being applied to EEG data for pattern analysis, group membership classification, and brain-computer interface purposes. This study aimed to systematically review recent advances in ML and DL supervised models for decoding and classifying EEG signals. Moreover, this article provides a comprehensive review of the state-of-the-art techniques used for EEG signal preprocessing and feature extraction. To this end, several academic databases were searched to explore relevant studies from the year 2000 to the present. Our results showed that the application of ML and DL in both mental workload and motor imagery tasks has received substantial attention in recent years. A total of 75% of DL studies applied convolutional neural networks with various learning algorithms, and 36% of ML studies achieved competitive accuracy by using a support vector machine algorithm. Wavelet transform was found to be the most common feature extraction method used for all types of tasks. We further examined the specific feature extraction methods and end classifier recommendations discovered in this systematic review.


2022 ◽  
Vol 22 (1) ◽  
Author(s):  
Zhao Shuai ◽  
Diao Xiaolin ◽  
Yuan Jing ◽  
Huo Yanni ◽  
Cui Meng ◽  
...  

Abstract Background Automated ICD coding on medical texts via machine learning has been a hot topic. Related studies from medical field heavily relies on conventional bag-of-words (BoW) as the feature extraction method, and do not commonly use more complicated methods, such as word2vec (W2V) and large pretrained models like BERT. This study aimed at uncovering the most effective feature extraction methods for coding models by comparing BoW, W2V and BERT variants. Methods We experimented with a Chinese dataset from Fuwai Hospital, which contains 6947 records and 1532 unique ICD codes, and a public Spanish dataset, which contains 1000 records and 2557 unique ICD codes. We designed coding tasks with different code frequency thresholds (denoted as $$f_s$$ f s ), with a lower threshold indicating a more complex task. Using traditional classifiers, we compared BoW, W2V and BERT variants on accomplishing these coding tasks. Results When $$f_s$$ f s was equal to or greater than 140 for Fuwai dataset, and 60 for the Spanish dataset, the BERT variants with the whole network fine-tuned was the best method, leading to a Micro-F1 of 93.9% for Fuwai data when $$f_s=200$$ f s = 200 , and a Micro-F1 of 85.41% for the Spanish dataset when $$f_s=180$$ f s = 180 . When $$f_s$$ f s fell below 140 for Fuwai dataset, and 60 for the Spanish dataset, BoW turned out to be the best, leading to a Micro-F1 of 83% for Fuwai dataset when $$f_s=20$$ f s = 20 , and a Micro-F1 of 39.1% for the Spanish dataset when $$f_s=20$$ f s = 20 . Our experiments also showed that both the BERT variants and BoW possessed good interpretability, which is important for medical applications of coding models. Conclusions This study shed light on building promising machine learning models for automated ICD coding by revealing the most effective feature extraction methods. Concretely, our results indicated that fine-tuning the whole network of the BERT variants was the optimal method for tasks covering only frequent codes, especially codes that represented unspecified diseases, while BoW was the best for tasks involving both frequent and infrequent codes. The frequency threshold where the best-performing method varied differed between different datasets due to factors like language and codeset.


Sensors ◽  
2021 ◽  
Vol 21 (17) ◽  
pp. 5779
Author(s):  
Runqiong Wang ◽  
Qinghua Song ◽  
Zhanqiang Liu ◽  
Haifeng Ma ◽  
Munish Kumar Gupta ◽  
...  

Data-driven chatter detection techniques avoid complex physical modeling and provide the basis for industrial applications of cutting process monitoring. Among them, feature extraction is the key step of chatter detection, which can compensate for the accuracy disadvantage of machine learning algorithms to some extent if the extracted features are highly correlated with the milling condition. However, the classification accuracy of the current feature extraction methods is not satisfactory, and a combination of multiple features is required to identify the chatter. This limits the development of unsupervised machine learning algorithms for chattering detection, which further affects the application in practical processing. In this paper, the fractal feature of the signal is extracted by structure function method (SFM) for the first time, which solves the problem that the features are easily affected by process parameters. Milling chatter is identified based on k-means algorithm, which avoids the complex process of training model, and the judgment method of milling chatter is also discussed. The proposed method can achieve 94.4% identification accuracy by using only one single signal feature, which is better than other feature extraction methods, and even better than some supervised machine learning algorithms. Moreover, experiments show that chatter will affect the distribution of cutting bending moment, and it is not reliable to monitor tool wear through the polar plot of the bending moment. This provides a theoretical basis for the application of unsupervised machine learning algorithms in chatter detection.


Author(s):  
Anantvir Singh Romana

Accurate diagnostic detection of the disease in a patient is critical and may alter the subsequent treatment and increase the chances of survival rate. Machine learning techniques have been instrumental in disease detection and are currently being used in various classification problems due to their accurate prediction performance. Various techniques may provide different desired accuracies and it is therefore imperative to use the most suitable method which provides the best desired results. This research seeks to provide comparative analysis of Support Vector Machine, Naïve bayes, J48 Decision Tree and neural network classifiers breast cancer and diabetes datsets.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1274
Author(s):  
Daniel Bonet-Solà ◽  
Rosa Ma Alsina-Pagès

Acoustic event detection and analysis has been widely developed in the last few years for its valuable application in monitoring elderly or dependant people, for surveillance issues, for multimedia retrieval, or even for biodiversity metrics in natural environments. For this purpose, sound source identification is a key issue to give a smart technological answer to all the aforementioned applications. Diverse types of sounds and variate environments, together with a number of challenges in terms of application, widen the choice of artificial intelligence algorithm proposal. This paper presents a comparative study on combining several feature extraction algorithms (Mel Frequency Cepstrum Coefficients (MFCC), Gammatone Cepstrum Coefficients (GTCC), and Narrow Band (NB)) with a group of machine learning algorithms (k-Nearest Neighbor (kNN), Neural Networks (NN), and Gaussian Mixture Model (GMM)), tested over five different acoustic environments. This work has the goal of detailing a best practice method and evaluate the reliability of this general-purpose algorithm for all the classes. Preliminary results show that most of the combinations of feature extraction and machine learning present acceptable results in most of the described corpora. Nevertheless, there is a combination that outperforms the others: the use of GTCC together with kNN, and its results are further analyzed for all the corpora.


2021 ◽  
Vol 11 (15) ◽  
pp. 6787
Author(s):  
Jože M. Rožanec ◽  
Blaž Kažič ◽  
Maja Škrjanc ◽  
Blaž Fortuna ◽  
Dunja Mladenić

Demand forecasting is a crucial component of demand management, directly impacting manufacturing companies’ planning, revenues, and actors through the supply chain. We evaluate 21 baseline, statistical, and machine learning algorithms to forecast smooth and erratic demand on a real-world use case scenario. The products’ data were obtained from a European original equipment manufacturer targeting the global automotive industry market. Our research shows that global machine learning models achieve superior performance than local models. We show that forecast errors from global models can be constrained by pooling product data based on the past demand magnitude. We also propose a set of metrics and criteria for a comprehensive understanding of demand forecasting models’ performance.


Sign in / Sign up

Export Citation Format

Share Document