scholarly journals Continuous Automotive Software Updates through Container Image Layers

Electronics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 739
Author(s):  
Nicholas Ayres ◽  
Lipika Deka ◽  
Daniel Paluszczyszyn

The vehicle-embedded system also known as the electronic control unit (ECU) has transformed the humble motorcar, making it more efficient, environmentally friendly, and safer, but has led to a system which is highly dependent on software. As new technologies and features are included with each new vehicle model, the increased reliance on software will no doubt continue. It is an undeniable fact that all software contains bugs, errors, and potential vulnerabilities, which when discovered must be addressed in a timely manner, primarily through patching and updates, to preserve vehicle and occupant safety and integrity. However, current automotive software updating practices are ad hoc at best and often follow the same inefficient fix mechanisms associated with a physical component failure of return or recall. Increasing vehicle connectivity heralds the potential for over the air (OtA) software updates, but rigid ECU hardware design does not often facilitate or enable OtA updating. To address the associated issues regarding automotive ECU-based software updates, a new approach in how automotive software is deployed to the ECU is required. This paper presents how lightweight virtualisation technologies known as containers can promote efficient automotive ECU software updates. ECU functional software can be deployed to a container built from an associated image. Container images promote efficiency in download size and times through layer sharing, similar to ECU difference or delta flashing. Through containers, connectivity and OtA future software updates can be completed without inconveniences to the consumer or incurring expense to the manufacturer.

Author(s):  
Chung-Ping Young

The dramatic advancement of IC technologies makes electronic devices be smaller and run faster, so they are able to implement more functions in a limited space. The car electronics play an increasingly important role in automobile industry, and the embedded system has already been extensively employed for improving the operation and performance of vehicles, such as safety, comfort, convenience, and energy consumption. In terms of electronic system, an automobile is a distributed embedded system, and the control messages to each electronic control unit (ECU), go through in-vehicle networks. An ECU is a computing system, integrated with a data acquisition module or an electromechanical driver. A variety of ECUs implement versatile functions, such as powertrain, antilock braking system (ABS), traction control system (TCS), adaptive cruise control (ACC), and electronic stability program (ESP), etc. Sensors provide measurements of specific vehicle parameters in a format suitable for the digital microcontroller, while actuators are electrically operated devices that drive electromechanical components. Human machine interface is the input and output of vehicle operations to users.


2014 ◽  
Vol 577 ◽  
pp. 1034-1037 ◽  
Author(s):  
Chun Jie Wang ◽  
Le Ge ◽  
Tian Yong Lee

Aimed at the defects and deficiencies of traditional automotive ECU (Electronic Control Unit) development methods, AUTOSAR as a new standard for automotive software development makes the software development process simplified greatly. The existing AUTOSAR development tools are studied and compared in this article to analyze of their respective characteristics, and an ECU software design scheme of the system is summarized according to the methodology. The research results prove that AUTOSAR can raise the development efficiency and software portability.


2020 ◽  
Vol 7 (2) ◽  
pp. 8-12
Author(s):  
René Bergelt ◽  
Norbert Englisch

The development of automotive software has been an evolving process for the last decades. As a result, the paradigm of software development which is independent of the target hardware platform has been adopted in almost all parts of the automotive industry. Deploying software to a hardware platform is now controlled by an enormous parameter set stored in a mapping configuration. This led to the creation of numerous vendor-specific tools for electronic control unit (ECU) development. While this approach simplifies and supports the re-usability of vehicle functions it also increases the complexity as well as the difficulty for integration tests and error localization. In this paper, we present a conceptual platform which allows to establish references between different development and test phase items in a developer-friendly way. It revolves around two self-developed tools supported by an extensive AUTOSAR knowledge base. The system creates inter-connectivity so that it becomes easier to locate the actual origin of a misbehavior or to find a test error manifestation in the actual end system for developers and testers alike.


2019 ◽  
Vol 18 (3-2) ◽  
pp. 7-12
Author(s):  
Ahmad Faiz Ab Rahman ◽  
Hazlina Selamat ◽  
Ahmad Jais Alimin ◽  
Mohd Taufiq Muslim ◽  
Muhammad Mazizan Msduki ◽  
...  

The advancement in embedded systems, which includes the mass deployment of internet-connected electronics, allows the concept of Internet of Things (IoT), to become a reality. This paper discusses one example of how an internet-connected embedded system is utilized in an automotive system. An Electronic Control Unit (ECU), which functions as a control unit in a fuel injection system, are equipped with Wi-Fi capability and installed on 110cc motorcycle. The ECU is connected to multiple sensors that is used by the ECU as part of control system, as well as giving raw data in real time to the server by using Wi-Fi as the communication medium. The server will accumulate data transmitted from ECU by using MQTT protocol, chosen due to its minimal data profile. The data can be visualized through web portal, or opened by any other web-enabled devices. The data collected may also be used later for any other purposes, such as On-Board Diagnostics (OBD) system, etc.


2006 ◽  
Vol 326-328 ◽  
pp. 1427-1430
Author(s):  
Ki Won Han ◽  
Wan Sik Ryu ◽  
Jae Wook Jeon ◽  
Hyeon Ki Choi ◽  
Hyun Soo Kim ◽  
...  

Drivers are becoming more fatigued and uncomfortable as traffic densities increase, and so, can show slower reaction time. They then face the danger of traffic accidents due to their inability to cope with frequent shifting. To reduce this risk, some drivers prefer automatic transmissions to manual transmissions. However, automatic transmission requires both higher fuel consumptions and costs. For this reason, attention to automated manual transmission that can provide high efficiency, low cost and easy manufacturability has been increasing. In addition, the function and performance of the electronic control unit of automobiles has improved continually and rapidly with the growing electronics technology. The ECU is a representative embedded system in automobiles, which has to satisfy high performance and reliability under the constraints of size and cost. In this paper, the embedded system platform for automobiles is developed on the basis of MPC565, and a test rig is developed to perform the basic function test for automatic clutch actuation. The developed embedded system and clutch control algorithm are validated by the experimental results performed on the test rig.


Electronics ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 1645
Author(s):  
Geonil Lee ◽  
Seongmin Ha ◽  
Jae-il Jung

Recent advances in information and communication technology (ICT) have enabled interaction and cooperation between components of the transportation system, and cooperative eco-driving systems that apply ICT to eco-driving systems are receiving significant attention. A cooperative eco-driving system is a complex system that requires consideration of the electronic control unit (ECU) and vehicle-to-everything (V2X) communication. To evaluate these complex systems, it is needed to integrate simulators with expertise. Therefore, this study presents an integrated driving hardware-in-the-loop (IDHIL) simulator for the testing and evaluation of cooperative eco-driving systems. The IDHIL simulator is implemented by integrating the driving hardware-in-the-loop simulator and a vehicular ad hoc network simulator to develop and evaluate a hybrid control unit and cooperative eco-driving application for the connected hybrid electric vehicle (CHEV). A cooperative eco-driving speed guidance application is utilized to demonstrate the use of our simulator. The results of the evaluation show the improved fuel efficiency of the CHEV through a calculation of the optimal speed profile and the optimal distribution of power based on V2X communication. Finally, this paper concludes with a description of future directions for the testing and evaluation of cooperative eco-driving systems.


Electronics ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 850
Author(s):  
Jihyun Park ◽  
Byoungju Choi

With recent increases in the amount of software installed in vehicles, the probability of automotive software faults that lead to accidents has also increased. Because automotive software faults can lead to serious accidents or even mortalities, vehicle software design and testing must consider safety a top priority. ISO 26262 recommends fault injection testing as a measure to verify the functional safety of vehicles. However, the standard does not clearly specify when and where faults should be injected, and the tools to support fault injection testing for automotive software are also insufficient. In the present study, we define faults that may occur in Automotive Open System Architecture (AUTOSAR)-based automotive software and propose a fault injection method to be applied during the software development process. The proposed method can inject different types of faults that may occur in AUTOSAR-based automotive software, such as access, asymmetric, and timing errors, while minimizing performance degradation due to fault injection, and without using any separate hardware devices. The superior performance of the proposed method is demonstrated through empirical studies applied to fault injection testing of a range of vehicle electronic control unit software.


2018 ◽  
Author(s):  
Abdallah Dabboussi ◽  
Jaafar Gaber ◽  
Maxime Wack ◽  
Raed Kouta ◽  
Bachar EL Hassan ◽  
...  

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Chiara Barchielli ◽  
Cristina Marullo ◽  
Manila Bonciani ◽  
Milena Vainieri

Abstract Background Several technological innovations have been introduced in healthcare over the years, and their implementation proved crucial in addressing challenges of modern health. Healthcare workers have frequently been called upon to become familiar with technological innovations that pervade every aspect of their profession, changing their working schedule, habits, and daily actions. Purpose An in-depth analysis of the paths towards the acceptance and use of technology may facilitate the crafting and adoption of specific personnel policies taking into consideration definite levers, which appear to be different in relation to the age of nurses. Approach The strength of this study is the application of UTAUT model to analyse the acceptance of innovations by nurses in technology-intensive healthcare contexts. Multidimensional Item Response Theory is applied to identify the main dimensions characterizing the UTAUT model. Paths are tested through two stage regression models and validated using a SEM covariance analysis. Results The age is a moderator for the social influence: social influence, or peer opinion, matters more for young nurse. Conclusion The use of MIRT to identify the most important items for each construct of UTAUT model and an in-depth path analysis helps to identify which factors should be considered a leverage to foster nurses’ acceptance and intention to use new technologies (o technology-intensive devices). Practical implications Young nurses may benefit from the structuring of shifts with the most passionate colleagues (thus exploiting the social influence), the participation in ad hoc training courses (thus exploiting the facilitating conditions), while other nurses could benefit from policies that rely on the stressing of the perception of their expectations or the downsizing of their expectancy of the effort in using new technologies.


Author(s):  
C Kannan ◽  
R Vignesh ◽  
C Karthick ◽  
B Ashok

Lithium-ion batteries are facing difficulties in an aspect of protection towards battery thermal safety issues which leads to performance degradation or thermal runaway. To negate these issues an effective battery thermal management system is absolute pre-requisite to safeguard the lithium-ion batteries. In this context to support the future endeavours and to improvise battery thermal management system (BTMS) design and its operation the article reveals on three aspects through the analysis of scientific literatures. First, this paper collates the present research progress and status of various battery management strategies employed to lithium-ion batteries. Further, to promote stable and efficient BTMS operation as an initiation the extensive attention is paid towards roles of BTMS electronic control unit and also presented the essential functionality need to consider for designing best BTMS control strategy. Finally, elucidates the various unconventional assessment tools can be employed to recognize the suitable thermal management technique and also for establish optimum BTMS operation based on requirements. From the experience of this article additionally delivers some of the research gaps identified and the essential areas need to focus for the development of superior lithium-ion BTMS technology. All the contents reveal in this article will hopefully assist to the design commercially suitable effective BTMS technology especially for electro-mobility application.


Sign in / Sign up

Export Citation Format

Share Document