scholarly journals Power Conversion Using Analytical Model of Cockcroft-Walton Voltage Multiplier Rectenna

Electronics ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 881
Author(s):  
Esraa Mousa Ali ◽  
Nor Zaihar Yahaya ◽  
Omar Aqeel Saraereh ◽  
Anwar Hamdan Al Assaf ◽  
Bilal Hasan Alqasem ◽  
...  

A voltage multiplier rectenna is a combination of a voltage multiplier rectifier and an antenna used for the conversion of AC to DC. It is an essential part of the system of RF energy harvesting. Conventional rectennas are characterized by low conversion efficiency. This study presents an analytical novel mode designed for RF energy harvesting systems to study the voltage and current output of rectifier stages for efficiency optimization. The design contains a voltage multiplier rectification circuit with seven stages. The Schottky diode HSMS 285-C was selected for the circuit modeling voltage multiplier circuit. Advanced Design System (ADS) simulation was used to validate the equations of the theoretical model solved with MATLAB code. The fabricated system was tested for an input power range of 10 μW to 100 mW; the maximum output power is 0.2577 mW with maximum efficiency of 29.85%.

Author(s):  
M. Shafiqur Rahman ◽  
Uttam K. Chakravarty

Abstract This paper presents a radio frequency (RF) energy harvesting (RFEH) system with a multiband antenna configuration that can simultaneously harvest energy from the sub-6 GHz and 5G millimeter-wave (mm-Wave) frequency bands. The performance of the RFEH system is studied from −25 dBm to 5 dBm input power levels underlying the maximization of the overall efficiency and possible optimization strategies. The maximum achievable power conversion efficiency (PCE) is formulated as a mathematical programming problem and solved by optimizing the design factors including antenna geometry, operational frequencies, rectifier topologies, and rectifier parameters. An array of broadband high gain patch antennas with reconfigurable rectifiers, an impedance matching network, and a voltage-multiplier circuit are employed in the system to maximize the PCE. The voltage standing wave ratio (VSWR) and reflection coefficient (S11) of the antenna are estimated and optimized by numerical method. Simulations are conducted to evaluate the performances of the rectenna and the voltage-multiplier circuit. Results for radiation pattern, wave absorption, input impedance, voltage, and power across the load resistance as a function of frequency are obtained for the optimized configuration. The overall efficiency of the optimized RFEH system is measured at various power inputs and load resistances.


Electronics ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 1173
Author(s):  
Thuy-Linh Nguyen ◽  
Yasuo Sato ◽  
Koichiro Ishibashi

This paper proposes a structure of the μ W RF energy harvesting (RFEH) system that is used for scavenging RF power from an ambient environment. A cross-coupled rectifier (CCR) with floating sub-circuit structures was utilized in the application of dynamic threshold MOSFET (DTMOS) on Silicon on Thin Buried Oxide (SOTB) to obtain high drain conductance of the MOSFET. A wide bandwidth matching between antenna and rectifier was designed to receive energy from the orthogonal frequency division multiplexing (OFDM) RF signal with a bandwidth of 15 MHz at 950 MHz band. Realistic measurements with a 950 MHz LTE mobile phone signal from the ambient environment indicate that an average DC output power of 2.77 μ W is harvested with the proposed RFEH system at a level of −19.4 dBm input power. The proposed RFEH system exhibits the best performance when compared to that of other realistic RFEH systems and is a potential candidate for battery-less Internet of Things (IoT) applications.


Author(s):  
Seyedehmarzieh Rouhani ◽  
Kasra Rouhi ◽  
Adib Abrishamifar ◽  
Majid Tayarani

This paper presents an approach to power added efficiency (PAE) increase for Quasi-Doherty power amplifier (Q-DPA) design. For this aim, active feedback is utilized instead of a passive quarter wavelength transmission line (TL) usage, which is conventionally used in the DPA schematic. PAE increase can be done by applying an accurate load modulation to the main amplifier (PAmain), especially for technologies in which output impedance of the main power amplifier (Zout,main) considerably varies in both low and high power regions. Because such precise modulation is still based on a modified TL, this approach suffers from the inherent narrowband behavior of that TL. As a consequence, expecting a wideband DPA may not be satisfied in all cases. To deal with this issue, active feedback is used to play a role in reaching PAmain, which is not saturated before, to its maximum efficiency at the highest level of received input power (Pin) in the high power region. Following Zout,main trajectories in power and frequency sweeps simultaneously just by a passive TL are not needed anymore. Still, for the sake of preventing total PAE degradation due to the consummated power by the feedback path’s power amplifier (PAfeedback) should be limited, analytical confinement is provided in this work. A comparison is made between GaAs pHEMT 0.25um MMIC technology-based conventional DPA and the proposed revised approach based-DPA to verify the mentioned approach. The proposed PA shows maximum output power of 33.4 dBm, maximum PAE of 41.6, fractional bandwidth of 11%. The Q-DPA works with a maximum power gain of 24.16.


Author(s):  
Eman M. Abdelhady ◽  
◽  
Hala M. Abdelkader ◽  
Amr A. Al-Awamry

This paper presents a novel simple adaptive and efficient rectifier for Radio Frequency (RF) energy harvesting applications. Traditional rectifiers have maximum RF-DC Power Conversion Efficiency (PCE) over a narrow range of RF input power due to diode breakdown voltage restrictions. The proposed adaptive design helps to extend the PCE over a wider range of RF input power at 2.45GHz using a simple design. Two alternative paths arecontrolled depending on the RF input power level. Low input power levels activate the first path connected to a single rectifier; low power levels make the diode operate below its breakdown voltage and therefore avoiding PCE degradation. High input power levels activate the second path dividing it into three rectifiers. This keeps input power at each rectifier at a low power level to avoid exceeding the diode break down voltage. Simulated PCE of this work is kept above 50% over a range of 21.4 dBm input power from -0.8dBm to 20.6dBm.


2018 ◽  
Vol 28 (02) ◽  
pp. 1950034 ◽  
Author(s):  
Asmita Rajawat ◽  
P. K. Singhal

Wireless sensor networks (WSN) have observed an exponential amount of growth in the recent past. The energy associated with the sensor nodes is limited which is a major bottleneck for the WSN technologies. The sensor nodes in WSN need to be continuously charged and thus an efficient RF energy harvesting needs to be explored. In the proposed design, a dual-band rectifier antenna for RF energy harvesting has been developed for 900 MHz and 2.45 GHz frequencies as RF energy is mainly available in the range of 900 MHz–2.45 GHz. The antenna proposed is microstrip U slot antenna with S11 parameter below −10 dB at 2.45 GHz and 0.8 GHz with a gain of 5.1 dBi and 10.1 dBi at 900 MHz and 2.45 GHz, respectively. The circuit for the rectifier uses Schottky Diode HSMS-285C for the purpose of rectification. The rectifier circuit used is a Greinacher Voltage Multiplier. Impedance Matching of the rectifier has been processed out to improve the performance of the circuit. Simulations of rectifier have been done on Advanced Design System (ADS) Software. The conversion efficiency at 900 MHz and 2.45 GHz is found to be 78.7% and 51.768%, respectively. The proposed design can find its uses in large number of energy harvesting applications under wireless power transmission such as powering of Wireless Sensor Nodes.


Sign in / Sign up

Export Citation Format

Share Document