scholarly journals Assessment and Improvement of the Pattern Recognition Performance of Memdiode-Based Cross-Point Arrays with Randomly Distributed Stuck-at-Faults

Electronics ◽  
2021 ◽  
Vol 10 (19) ◽  
pp. 2427
Author(s):  
Fernando L. Aguirre ◽  
Sebastián M. Pazos ◽  
Félix Palumbo ◽  
Antoni Morell ◽  
Jordi Suñé ◽  
...  

In this work, the effect of randomly distributed stuck-at faults (SAFs) in memristive cross-point array (CPA)-based single and multi-layer perceptrons (SLPs and MLPs, respectively) intended for pattern recognition tasks is investigated by means of realistic SPICE simulations. The quasi-static memdiode model (QMM) is considered here for the modelling of the synaptic weights implemented with memristors. Following the standard memristive approach, the QMM comprises two coupled equations, one for the electron transport based on the double-diode equation with a single series resistance and a second equation for the internal memory state of the device based on the so-called logistic hysteron. By modifying the state parameter in the current-voltage characteristic, SAFs of different severeness are simulated and the final outcome is analysed. Supervised ex-situ training and two well-known image datasets involving hand-written digits and human faces are employed to assess the inference accuracy of the SLP as a function of the faulty device ratio. The roles played by the memristor’s electrical parameters, line resistance, mapping strategy, image pixelation, and fault type (stuck-at-ON or stuck-at-OFF) on the CPA performance are statistically analysed following a Monte-Carlo approach. Three different re-mapping schemes to help mitigate the effect of the SAFs in the SLP inference phase are thoroughly investigated.

2021 ◽  
Vol 9 ◽  
Author(s):  
Fernando L. Aguirre ◽  
Sebastián M. Pazos ◽  
Félix Palumbo ◽  
Jordi Suñé ◽  
Enrique Miranda

We thoroughly investigate the performance of the Dynamic Memdiode Model (DMM) when used for simulating the synaptic weights in large RRAM-based cross-point arrays (CPA) intended for neuromorphic computing. The DMM is in line with Prof. Chua’s memristive devices theory, in which the hysteresis phenomenon in electroformed metal-insulator-metal structures is represented by means of two coupled equations: one equation for the current-voltage characteristic of the device based on an extension of the quantum point-contact (QPC) model for dielectric breakdown and a second equation for the memory state, responsible for keeping track of the previous history of the device. By considering ex-situ training of the CPA aimed at classifying the handwritten characters of the MNIST database, we evaluate the performance of a Write-Verify iterative scheme for setting the crosspoint conductances to their target values. The total programming time, the programming error, and the inference accuracy obtained with such writing scheme are investigated in depth. The role played by parasitic components such as the line resistance as well as some CPA’s particular features like the dynamical range of the memdiodes are discussed. The interrelationship between the frequency and amplitude values of the write pulses is explored in detail. In addition, the effect of the resistance shift for the case of a CPA programmed with no errors is studied for a variety of input signals, providing a design guideline for selecting the appropriate pulse’s amplitude and frequency.


2013 ◽  
Vol 37 (3) ◽  
pp. 611-620
Author(s):  
Ing-Jr Ding ◽  
Chih-Ta Yen

The Eigen-FLS approach using an eigenspace-based scheme for fast fuzzy logic system (FLS) establishments has been attempted successfully in speech pattern recognition. However, speech pattern recognition by Eigen-FLS will still encounter a dissatisfactory recognition performance when the collected data for eigen value calculations of the FLS eigenspace is scarce. To tackle this issue, this paper proposes two improved-versioned Eigen-FLS methods, incremental MLED Eigen-FLS and EigenMLLR-like Eigen-FLS, both of which use a linear interpolation scheme for properly adjusting the target speaker’s Eigen-FLS model derived from an FLS eigenspace. Developed incremental MLED Eigen-FLS and EigenMLLR-like Eigen-FLS are superior to conventional Eigen-FLS especially in the situation of insufficient data from the target speaker.


2021 ◽  
Vol 11 (1) ◽  
pp. 9
Author(s):  
Fernando Leonel Aguirre ◽  
Nicolás M. Gomez ◽  
Sebastián Matías Pazos ◽  
Félix Palumbo ◽  
Jordi Suñé ◽  
...  

In this paper, we extend the application of the Quasi-Static Memdiode model to the realistic SPICE simulation of memristor-based single (SLPs) and multilayer perceptrons (MLPs) intended for large dataset pattern recognition. By considering ex-situ training and the classification of the hand-written characters of the MNIST database, we evaluate the degradation of the inference accuracy due to the interconnection resistances for MLPs involving up to three hidden neural layers. Two approaches to reduce the impact of the line resistance are considered and implemented in our simulations, they are the inclusion of an iterative calibration algorithm and the partitioning of the synaptic layers into smaller blocks. The obtained results indicate that MLPs are more sensitive to the line resistance effect than SLPs and that partitioning is the most effective way to minimize the impact of high line resistance values.


1999 ◽  
Vol 575 ◽  
Author(s):  
H.-P. Brack ◽  
M. M. Koebel ◽  
A. Tsukada ◽  
J. Huslage ◽  
F. Buechi ◽  
...  

ABSTRACTWe have demonstrated earlier the useful performance of our PSI radiation-grafted membranes in terms of the current-voltage characteristics of 30 cm2 active area fuel cells containing these membranes and their long-term testing over 6,000 h at 60 °C. We report here on testing of PSI radiation-grafted membranes in these fuel cells at 80 °C and in short stacks comprised of two or four 100 cm2 active area cells. The in-situ degradation of membranes has been investigated by characterizing membranes both before testing in fuel cells and post-mortem after testing in fuel cells. Characterization was accomplished by means of ion-exchange capacity and infrared and Raman spectroscopic measurements. In addition, a rapid screening method for our ex-situ testing of the oxidative stability of proton-conducting membranes was developed in this work. Comparison of the initial screening test results concerning the oxidative stability of some perfluorinated, partially-fluorinated, and non-fluorinated membranes compare well qualitatively with the relative stability of these same membranes during their long-term testing in fuel cells.


2013 ◽  
Vol 333-335 ◽  
pp. 1106-1109
Author(s):  
Wei Wu

Palm vein pattern recognition is one of the newest biometric techniques researched today. This paper proposes project the palm vein image matrix based on independent component analysis directly, then calculates the Euclidean distance of the projection matrix, seeks the nearest distance for classification. The experiment has been done in a self-build palm vein database. Experimental results show that the algorithm of independent component analysis is suitable for palm vein recognition and the recognition performance is practical.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Li Cen Lim ◽  
Yee Ying Lim ◽  
Yee Siew Choong

Abstract B-cell epitope will be recognized and attached to the surface of receptors in B-lymphocytes to trigger immune response, thus are the vital elements in the field of epitope-based vaccine design, antibody production and therapeutic development. However, the experimental approaches in mapping epitopes are time consuming and costly. Computational prediction could offer an unbiased preliminary selection to reduce the number of epitopes for experimental validation. The deposited B-cell epitopes in the databases are those with experimentally determined positive/negative peptides and some are ambiguous resulted from different experimental methods. Prior to the development of B-cell epitope prediction module, the available dataset need to be handled with care. In this work, we first pre-processed the B-cell epitope dataset prior to B-cell epitopes prediction based on pattern recognition using support vector machine (SVM). By using only the absolute epitopes and non-epitopes, the datasets were classified into five categories of pathogen and worked on the 6-mers peptide sequences. The pre-processing of the datasets have improved the B-cell epitope prediction performance up to 99.1 % accuracy and showed significant improvement in cross validation results. It could be useful when incorporated with physicochemical propensity ranking in the future for the development of B-cell epitope prediction module.


Author(s):  
V. Ramya ◽  
G. Sivashankari

Face recognition from the images is challenging due to the wide variability of face appearances and the complexity of the image background. This paper proposes a novel approach for recognizing the human faces. The recognition is done by comparing the characteristics of the new face to that of known individuals. It has Face localization part, where mouth end point and eyeballs will be obtained. In feature Extraction, Distance between eyeballs and mouth end point will be calculated. The recognition is performed by Neural Network (NN) using Back Propagation Networks (BPN) and Radial Basis Function (RBF) networks. The recognition performance of the proposed method is tabulated based on the experiments performed on a number of images.


2020 ◽  
Vol 17 (3) ◽  
pp. 172988142092529
Author(s):  
Wenkang Wang ◽  
Liancun Zhang ◽  
Juan Liu ◽  
Bainan Zhang ◽  
Qiang Huang

Real-time recognition of walking-related activities is an important function that lower extremity assistive devices should possess. This article presents a real-time walking pattern recognition method for soft knee power assist wear. The recognition method employs the rotation angles of thighs and shanks as well as the knee joint angles collected by the inertial measurement units as input signals and adopts the rule-based classification algorithm to achieve the real-time recognition of three most common walking patterns, that is, level-ground walking, stair ascent, and stair descent. To evaluate the recognition performance, 18 subjects are recruited in the experiments. During the experiments, subjects wear the knee power assist wear and carry out a series of walking activities in an out-of-lab scenario. The results show that the average recognition accuracy of three walking patterns reaches 98.2%, and the average recognition delay of all transitions is slightly less than one step.


Sign in / Sign up

Export Citation Format

Share Document