scholarly journals A Forward-Backward Iterative Procedure for Improving the Resolution of Resonant Microwave Sensors

Electronics ◽  
2021 ◽  
Vol 10 (23) ◽  
pp. 2930
Author(s):  
Giovanni Buonanno ◽  
Adriana Brancaccio ◽  
Sandra Costanzo ◽  
Raffaele Solimene

This paper sets out a method for improving the resolution of resonant microwave sensors. Usually, the frequency response of these devices is associated with a low quality factor, and consequently with a low resolution in terms of tracking capacity of the resonance frequency shift. Furthermore, since only a finite number of samples can be acquired during the measurement process, the “true” resonance frequency may not be included in the set of acquired data. In order to have an accurate estimate of the resonance frequency, high performance systems with very fine frequency sampling are thus required. To limit these drawbacks, an iterative algorithm is presented which aims to refine the response of resonant microwave sensors by means of a suitable post-processing. The algorithm evaluation is first carried out on synthetic data, and then applied on experimental data referring to a practical scenario, which is inherent to return loss measurements performed by a microwave patch antenna immersed in a water-glucose solution with different concentrations.

2019 ◽  
pp. 7-12
Author(s):  
Hilal Koc Polat

It is unavoidable to decrease the thickness of the substrate in order to obtain enough flexibility. Decreasing the height of the substrate lowers the gain of antenna and its bandwidth. Thus, it is challenging to provide operability for the flexible materials and it requires new approaches. This paper is shown that the using nano silver paste for the designed antenna causes better return loss rates (S11) and bandwidth. Also, the effect of sintering temperatures on the response of the antenna is analyzed for the range of 150 ° C to 350 ° C. The highest resonance frequency and the lowest return loss are observed at 350 ° C in this range. The SEM images of the antenna surfaces show that the nanoparticles in the paste group together with increasing sintering temperatures. When compared to the perfect conductor silver, better return loss and bandwidth are obtained.


2021 ◽  
Vol 2070 (1) ◽  
pp. 012116
Author(s):  
John Colaco ◽  
R.B. Lohani

Abstract In the present era of the digital world, demand for IoT based smart devices has seen tremendous growth. These devices involve real-time human-to-machine communication and interaction. Communication of uninterrupted quality depends on the high bandwidth and speed of the internet. The development of 5G wireless network technology is the response to the crucial factors that lead to this demand, because of its ability to provide extremely fast internet speed, high bandwidth, high performance, reduced latency, and high reliability. In this research work, the authors have developed a metamaterial-based multi-band microstrip rectangular shape patch antenna with a wide high-performance bandwidth because of the demand. The proposed design has a low dielectric constant of 2.2, which is of Rogers RT/Duroid substrate, and a dielectric loss tangent of 0.0010. The design has a resonant frequency of 26 GHz. The simulations carried out using FEKO software has been analyzed for performance. The simulation and analysis reveal a good return loss of -34.4 dB at 26 GHz, -13.49 dB at 40 GHz, -13.63 dB at 53.5 GHz, high bandwidth of 5.368 GHz at 26 GHz, 3.76 GHz at 40 GHz, 2.88 GHz at 53.5 GHz, desirable voltage standing wave ratio, 1⩽VSWR⩽ 2, high gain of 10 dBi at 26 GHz, 5 dBi at 40 GHz, and high antenna radiation efficiency of 99.7 % at 26 GHz, and 61% at 40 GHz, 50% at 53.5 GHz. The bandwidth, return loss, antenna radiation efficiency and power density indicate an improvement of 5.368 GHz to 5.630 GHz, -34.82 dB to -57.10 dB, 99.7 % to 99.8 % and 2208 kW/m2 to 2800 kW/m2 respectively after loading and incorporating artificial magnetic split-ring resonator-based metamaterial on the patch. Further improvement is also seen at other frequencies. The proposed design has immense benefits for humanity due to its improved capacity to manage larger connected IoT devices in the fields of Industrial 4.0, Healthcare 4.0, Autonomous Vehicles, Agriculture 4.0, Education, Climate Change, Sustainability, and Oceanography.


Author(s):  
Nurhayati Nurhayati ◽  
Paulen Aulia Lutfia ◽  
Raimundo Eider Figueredo Sobrinho ◽  
Alexandre Manicoba De Oliveira ◽  
João Francisco Justo Filho ◽  
...  

Microstrip antenna with circular polarization can be applied for many applications. Some microstrip antenna with square, circular, triangular, and hexagonal shape has been designed to get return loss, axial ratio, and radiation performance. We compare twelve microstrip antenna by maintaining its substrate dimension, feeding shape, and outer patch dimension. Even though antenna has a circular patch, it doesn’t always produce circular polarization. From the simulation, we found that with add some structure, the antenna can reach multiband resonance from 1 to 6 GHz. The Circular patch antenna reached seven numbers of the multiband resonance frequency. The hexagonal patch antenna reaches the highest directivity as 9.53 dBi. The circular polarization is achieved for a square and Hexagonal patch shape with axial ratio value is 1.96 dB at 4 GHz and  1.26 dB at 4.1 GHz sequentially at phi 900 and theta 900. 


Author(s):  
Ketavath Kumar Naik ◽  
Ravi Kumar Palla ◽  
Sriram Sandhya Rani ◽  
Dattatreya Gopi

Monopole L-shaped slits are embedded on rectangular patch antenna is designed for S-band applications. The proposed antenna is a square patch radiator with four L-shaped slits are presented. The proposed antenna radiates at 3GHz resonance frequency with bandwidth of 1.9GHz and -26.4dB return loss. The impedance bandwidth is enhanced 62.7% with proposed antenna model. The proposed L-shaped slit patch antenna is small in size and compact. The radiation pattern is presented in the results and it works at S-band applications.


2012 ◽  
Vol 2012 ◽  
pp. 1-5
Author(s):  
R. C. Hadarig ◽  
M. E. de Cos ◽  
F. Las-Heras

In this contribution High-Performance Computing electromagnetic methods are applied to the design of a patch antenna combined with EBG structure in order to obtain bandwidth enhancement. The electrical characteristics of the embedded structure (patch antenna surrounded by EBG unit cells) are evaluated by means of method of moment technique (MoM) whereas for designing the unit cell, the finite element method (FEM) together with the Bloch-Floquet theory is used. The manufactured prototypes are characterized in terms of return loss and radiation pattern in an anechoic chamber.


2019 ◽  
Vol 1 (1) ◽  
pp. 7-12
Author(s):  
Hilal Koc Polat

It is unavoidable to decrease the thickness of the substrate in order to obtain enough flexibility. Decreasing the height of the substrate lowers the gain of antenna and its bandwidth. Thus, it is challenging to provide operability for the flexible materials and it requires new approaches. This paper is shown that the using nano silver paste for the designed antenna causes better return loss rates (S11) and bandwidth. Also, the effect of sintering temperatures on the response of the antenna is analyzed for the range of 150 ° C to 350 ° C. The highest resonance frequency and the lowest return loss are observed at 350 ° C in this range. The SEM images of the antenna surfaces show that the nanoparticles in the paste group together with increasing sintering temperatures. When compared to the perfect conductor silver, better return loss and bandwidth are obtained.


2021 ◽  
Vol 2114 (1) ◽  
pp. 012029
Author(s):  
Alaa M. Abdulhussein ◽  
Ali H. Khidhir ◽  
Ahmed A. Naser

Abstract For any wireless communication, the antenna plays a very important role. The request for this technology is reduced antenna size, weight, and cost with a low profile, high performance, and low return loss (RL). To meet these requirements, the microstrip patch antenna (MPA) can be used. This research represents the design and manufacture of the MPA for the 2.4 GHz applications with very low RL and perfect voltage standing wave ratio (VSWR). Computer simulation technology (CST) studio is used to design and simulation. The proposed MPA is fabricated on flame retardant (FR-4) material as a substrate. The results show that the MPA is capable to deal with RL of -38.86 dB at the frequency of 2.393 GHz with a bandwidth (BW) of 58 MHz and VSWR of 1.02. The volume of the antenna is 75.85 × 57.23 × 1.6 mm 3.


2012 ◽  
Vol 2 (8) ◽  
pp. 130-133
Author(s):  
Amandeep Singh Amandeep Singh ◽  
◽  
Sankul Agarwal ◽  
Vaibhav Sharma ◽  
Shivam Pandita

2020 ◽  
Vol 96 (3s) ◽  
pp. 585-588
Author(s):  
С.Е. Фролова ◽  
Е.С. Янакова

Предлагаются методы построения платформ прототипирования высокопроизводительных систем на кристалле для задач искусственного интеллекта. Изложены требования к платформам подобного класса и принципы изменения проекта СнК для имплементации в прототип. Рассматриваются методы отладки проектов на платформе прототипирования. Приведены результаты работ алгоритмов компьютерного зрения с использованием нейросетевых технологий на FPGA-прототипе семантических ядер ELcore. Methods have been proposed for building prototyping platforms for high-performance systems-on-chip for artificial intelligence tasks. The requirements for platforms of this class and the principles for changing the design of the SoC for implementation in the prototype have been described as well as methods of debugging projects on the prototyping platform. The results of the work of computer vision algorithms using neural network technologies on the FPGA prototype of the ELcore semantic cores have been presented.


Sign in / Sign up

Export Citation Format

Share Document