scholarly journals Environmental Perception Q-Learning to Prolong the Lifetime of Poultry Farm Monitoring Networks

Electronics ◽  
2021 ◽  
Vol 10 (23) ◽  
pp. 3024
Author(s):  
Zike Wu ◽  
Pan Pan ◽  
Jieqiang Liu ◽  
Beibei Shi ◽  
Ming Yan ◽  
...  

The reduction of the effects of heat-stress phenomena on poultry health and energy conservation of poultry farm monitoring networks are highly related problems. To address these problems, we propose environmental perception Q-learning (EPQL) to prolong the lifetime of poultry farm monitoring networks. EPQL consists of an environmental-perception module and Q-learning. According to the temperature and humidity model of heat stress, an environmental-perception module determines the transmission rate, while Q-learning adjusts the transmission rate according to the success rate of packet transmission and the remaining energy. In real-world tests, our poultry farm monitoring networks used only about 8% of energy in a month. The real-time information of these monitoring networks was available on smartphones. In laboratory tests, compared with CSMA/CA (23.67 days), S-MAC (109.37 days), and T-MAC (252.79 days) under real systems with 2000 mAh battery, the battery-life performance of EPQL (436.48 days) was better. Moreover, EPQL reduces the packet loss rate by about 60% while simultaneously decreasing the average delay by about 20%. Generally, based on the framework of EPQL, the implemented temperature and humidity model of heat stress for poultry could be replaced by other models to extend its applicability range.

2021 ◽  
Vol 43 (2) ◽  
pp. 137
Author(s):  
Matthew Mo ◽  
Mike Roache

Heat stress events in Australian flying-fox camps have resulted in significant numbers of flying-fox deaths. The frequency and intensity of such events have increased in recent decades, attributed to anthropogenic climate change. Evidence-based interventions are required to address this growing threat. Responders currently use different combinations of a range of intervention methods. We undertook a systematic review of heat stress interventions, which we classified as either ‘camp-scale’ or ‘individual-scale’. Camp-scale interventions included manual and automated misting of roost vegetation, whereas individual-scale interventions included spraying individual animals or removing them for intensive cooling and rehydration procedures. Our study showed that to date, evaluation of the efficacy of heat stress interventions has been largely anecdotal rather than empirical. This highlights the need for dedicated rigorous studies to evaluate the effectiveness of all the intervention methods described here. It will be especially important to understand the relationship between camp temperature and humidity levels and their influence on flying-foxes’ ability to regulate their body temperature, because high relative humidity reduces the ability of mammals to cool themselves using evaporative heat loss. The development of biophysiological measures such as temperature and humidity indices for different flying-fox species would enable meaningful interpretations of intervention trials under controlled conditions.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Jian Zhou ◽  
Xiaotian Gong ◽  
Lijuan Sun ◽  
Yong Xie ◽  
Xiaoyong Yan

Satellite Internet of Things (S-IoT), which integrates satellite networks with IoT, is a new mobile Internet to provide services for social networks. However, affected by the dynamic changes of topology structure and node status, the efficient and secure forwarding of data packets in S-IoT is challenging. In view of the abovementioned problem, this paper proposes an adaptive routing strategy based on improved double Q-learning for S-IoT. First, the whole S-IoT is regarded as a reinforcement learning environment, and satellite nodes and ground nodes in S-IoT are both regarded as intelligent agents. Each node in the S-IoT maintains two Q tables, which are used for selecting the forwarding node and for evaluating the forwarding value, respectively. In addition, the next hop node of data packets is determined depending on the mixed Q value. Second, in order to optimize the Q value, this paper makes improvements on the mixed Q value, the reward value, and the discount factor, respectively, based on the congestion degree, the hop count, and the node status. Finally, we perform extensive simulations to evaluate the performance of this adaptive routing strategy in terms of delivery rate, average delay, and overhead ratio. Evaluation results demonstrate that the proposed strategy can achieve more efficient and secure routing in the highly dynamic environment compared with the state-of-the-art strategies.


2021 ◽  
Author(s):  
◽  
Yu Ren

<p>Spectrum today is regulated based on fixed licensees. In the past radio operators have been allocated a frequency band for exclusive use. This has become problem for new users and the modern explosion in wireless services that, having arrived late find there is a scarcity in the remaining available spectrum. Cognitive radio (CR) presents a solution. CRs combine intelligence, spectrum sensing and software reconfigurable radio capabilities. This allows them to opportunistically transmit among several licensed bands for seamless communications, switching to another channel when a licensee is sensed in the original band without causing interference. Enabling this is an intelligent dynamic channel selection strategy capable of finding the best quality channel to transmit on that suffers from the least licensee interruption. This thesis evaluates a Q-learning channel selection scheme using an experimental approach. A cognitive radio deploying the scheme is implemented on GNU Radio and its performance is measured among channels with different utilizations in terms of its packet transmission success rate, goodput and interference caused. We derive similar analytical expressions in the general case of large-scale networks. Our results show that using the Q-learning scheme for channel selection significantly improves the goodput and packet transmission success rate of the system.</p>


Author(s):  
Ramon Farré ◽  
Miguel A. Rodríguez-Lázaro ◽  
Anh Tuan Dinh-Xuan ◽  
Martí Pons-Odena ◽  
Daniel Navajas ◽  
...  

High ambient temperature and humidity greatly increase the risk of hyperthermia and mortality, particularly in infants, who are especially prone to dehydration. World areas at high risk of heat stress include many of the low- and middle-income countries (LMICs) where most of their inhabitants have no access to air conditioning. This study aimed to design, evaluate, and test a novel low-cost and easy-to-assemble device aimed at preventing the risk of infant hyperthermia in LMICs. The device is based on optimizing negative heat transfer from a small amount of ice and transferring it directly to the infant by airflow of refrigerated air. As a proof of concept, a device was assembled mainly using recycled materials, and its performance was assessed under laboratory-controlled conditions in a climatic chamber mimicking realistic stress conditions of high temperature and humidity. The device, which can be assembled by any layperson using easily available materials, provided sufficient refrigerating capacity for several hours from just 1–2 kg of ice obtained from a domestic freezer. Thus, application of this novel device may serve to attenuate the adverse effects of heat stress in infants, particularly in the context of the evolving climatic change trends.


2021 ◽  
Author(s):  
◽  
Yu Ren

<p>Spectrum today is regulated based on fixed licensees. In the past radio operators have been allocated a frequency band for exclusive use. This has become problem for new users and the modern explosion in wireless services that, having arrived late find there is a scarcity in the remaining available spectrum. Cognitive radio (CR) presents a solution. CRs combine intelligence, spectrum sensing and software reconfigurable radio capabilities. This allows them to opportunistically transmit among several licensed bands for seamless communications, switching to another channel when a licensee is sensed in the original band without causing interference. Enabling this is an intelligent dynamic channel selection strategy capable of finding the best quality channel to transmit on that suffers from the least licensee interruption. This thesis evaluates a Q-learning channel selection scheme using an experimental approach. A cognitive radio deploying the scheme is implemented on GNU Radio and its performance is measured among channels with different utilizations in terms of its packet transmission success rate, goodput and interference caused. We derive similar analytical expressions in the general case of large-scale networks. Our results show that using the Q-learning scheme for channel selection significantly improves the goodput and packet transmission success rate of the system.</p>


2020 ◽  
Vol 4 (1) ◽  
pp. 1-9
Author(s):  
Budi Indra Gunawan ◽  
Unan Yusmaniar Oktiawati

Server role becomes very important to provide service to clients. Therefore the performance of the server needs to be maintained. The performance of the server is not only influenced by the technology of the hardware but also influenced by server room ideal temperature and humidity condition. Monitoring and adjusting temperature condition is not possible to be done continuously manually because of limited human resources. One of the solutions is using a system based on the Internet of Things (IoT). This research proposed a prototype of  server room temperature and humidity real-time monitoring system using RobotDyn ATmega+ESP8266 microcontroller and the Blynk IoT platform. The prototype also can maintain the temperature of server room on ideal condition by controlling Air Conditioner using Fuzzy logic Mamdani Method and infrared communication. The result of this research a prototype that can read temperature and humidity of server room accurately realtive error for temperature is 0,81% and relative error for humidity is 4,52%. Quality of Service for data transmission from prototype to Blynk Platform is very good, with average delay 127.54ms, average packet loss ratio 0.54%, average packet delivery ratio 99.46%, and average throughput 10.5 kbps. Control System that built using fuzzy logic Mamdani Method can automatically control the value of Air Conditioner temperature output that adjust the condition of server room with maximum  range for control Air Conditioner is 4 meters and 45° from Air Conditioner’s transmitter


Author(s):  
Babu R Dawadi ◽  
Abhishek Thapa ◽  
Roshan Guragain ◽  
Dilochan Karki ◽  
Sandesh P Upadhyaya ◽  
...  

Legacy IPv4 networks are strenuous to manage and operate. Network operators are in need to minimize the capital and operational expenditure of running network infrastructure. The implementation of Software-defined networking (SDN) addresses those issues by minimizing the expenditures in the long run. Legacy networks need to integrate with the SDN networks for the smooth migration towards the fully functional SDN environment. In this paper, we compare the network performance of the legacy network with the SDN network for IP routing in order to determine the feasibility of the SDN deployment in the Internet Service provider (ISP) network. The simulation of the network is performed in the Mininet test-bed and the network traffic is generated using distributed Internet traffic generator. Open network operating system is used as a controller for the SDN network in which SDN-IP application is used for IP routing. Round trip time, bandwidth, and packet transmission rate from both SDN and legacy networks are first collected and then the comparison is done. We found that SDN-IP performs better in terms of bandwidth and latency as compared to legacy routing. The experimental analysis of interoperability between SDN and legacy networks shows that SDN implementation in production level carrier-grade ISP network is viable and progressive.


Author(s):  
T.N. Narytnik ◽  
P. G. Akopyan ◽  
V.G. Saiko ◽  
V.I. Korsun ◽  
S.V. Sarapulov

At present, there is an exponential increase in the total data traffic of mobile networks. Implementation of new technologies, implementation of innovative infrastructure solutions, as well as optimization and increase of efficiency of use of existing networks are necessary to prevent failures and congestion. The most promising way, from a mobile operator's perspective, is to develop a macro level and use Wi-Fi to offload LTE-A (Wi-Fi Offloading). However, the efficiency of the conflict resolution algorithms used in modern Wi-Fi systems is significantly reduced with increasing number of subscribers. Features of the family of the latest Wi-Fi standards (IEEE 802.11n, IEEE 802.11ac, IEEE 802.11ax), which are intended for unloading mobile networks and quality provision of Internet of Things, are considered in the article. A review and comparison of the protocols of the latest IEEE 802.11 standards showed that, technically, Wi-Fi 6 has a data rate that is 37% faster than 802.11ac, but more importantly, the updated specification offers 4 times more bandwidth per user in crowded places, as well as higher energy efficiency, which should increase the battery life of the devices. To achieve these improvements, 802.11ax has made many changes, including several multi-user technologies borrowed from the cellular industry, namely MU-MIMO and OFDMA technologies, which greatly increase bandwidth and productivity through more concurrent connections and more careful use of the spectrum. The results of simulation modeling of the delay in packet transmission, average access point bandwidth and data loss values ​​using different modes of collective access to the IEEE 802.11n network channels: distributed (DCF) and centralized (PCF) access coordination functions. OPNET Modeler, which is radio-oriented and allows you to build models without programming, has been selected to develop the network simulation model.


2020 ◽  
pp. 10-11
Author(s):  
Ekaterina N. Rud ◽  
◽  
Elena V. Kuzminova ◽  
Marina P. Semenenko ◽  
Andrey A. Abramov ◽  
...  

In the context of the industrial survival of animal husbandry, taking into account the climatic characteristics of Krasnodar region, climate is considered as a heat stress, the result of an imbalance between the intake of heat from the environment and its release by the body. To assess the risks of occurrence and severity of heat stress in cattle, it is necessary to take into account not only the ambient temperature, but also humidity indicators. The temperature and humidity index provides for these two variables and allows us to assess the need for cooling of animals. The article provides information on the possibilities of occurrence and impact of heat stress due to the temperature-humidity state of the environment. Analysis of the reporting data of the Veterinary Department of Krasnodar region and the number of industries in Krasnodar region and cattle sampling rates from 2017 to 2019 demonstrates an increase in the number of abortions and youth losses during the third quarter when the temperature of the environment reaches its maximum. With this in mind, to increase the adaptability of animals under prolonged heat stress, it is necessary to regularly monitor the environmental parameters (use of thermometers and hygrometers to assess the temperature and humidity index), as well as plan protective measures (adapted feeding technology, specialized additives, good bulky feed), which will help to minimize the negative impact of hyperthermia on the economy of livestock production.


Sign in / Sign up

Export Citation Format

Share Document