scholarly journals Neoteric Fuzzy control stratagem and design of Chopper fed Multilevel Inverter for enhanced Voltage Output involving Plug-In Electric Vehicle (PEV) applications

Electronics ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 1092 ◽  
Author(s):  
Sunddararaj ◽  
Rangarajan ◽  
Gopalan

The utilization of plug-in electric vehicles (PEV) has started to garner more attention worldwide considering the environmental and economic benefits. This has led to the invention of new technologies and motifs associated with batteries, bidirectional converters and inverters for Electric Vehicle applications. In this paper, a novel design and control of chopper circuit is proposed and configured with the series and parallel connection of the power electronic based switches for two-way operation of the converter. The bidirectional action of the proposed converter makes it suitable for plug-in electric vehicle applications as the grid is becoming smarter. The DC–DC converter is further interfaced with the designed multilevel inverter (MLI). The reduced switches associated with the novel design of MLI have overcome the cons associated with the conventional inverters in terms of enhanced performance in the proposed design. Further, novel control strategies have been proposed for the DC–DC converter based on Proportional Integral (PI) and Fuzzy based control logic. For the first time, the performance of the entire system is evaluated based on the comparison of proposed PI, fuzzy, and hybrid controllers. New rules have been formulated for the Fuzzy based controllers that are associated with the Converter design. This has further facilitated the interface of bidirectional DC–DC converter with the proposed MLI for an enhanced output voltage. The results indicate that the proposed hybrid controller provides better performance in terms of voltage gain, ripple, efficiency and overall aspects of power quality that forms the crux for PEV applications. The novelty of the design and control of the overall topology has been manifested based on simulation using MATLAB/SIMULINK.

2013 ◽  
Vol 390 ◽  
pp. 419-423
Author(s):  
Yong Gang Liu ◽  
Zhen Zhen Lei ◽  
Li Lai Lu ◽  
Liang Chen

Modular approach has been adopted in this paper to divide DCT transmission control unit into four modules, which are clutch control, synchronizer control, shift assembly control and vehicle control respectively. The function for each module has been analyzed and the control logic relations among these modules have also been established for modular integration. Moreover, the modeling process and control strategies for each module have been established for respective control objection. On this basis, the simulation model of transmission control unit for DCT has been built using the Matlab/Simulink platform, and the simulation has been carried out at given throttle opening. The results show that the control strategy of transmission control unit for DCT has been validated, which provides theoretical basis for DCT product development.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Farid Khoucha ◽  
Khoudir Marouani ◽  
Mohamed Benbouzid ◽  
Abdelaziz Kheloui ◽  
Abdeslam Mamoune

This paper presents a new hybrid cascaded H-bridge multilevel inverter motor drive DTC scheme for electric vehicles where each phase of the inverter can be implemented using a single DC source. Traditionally, each phase of the inverter requires DC source for output voltage levels. In this paper, a scheme is proposed that allows the use of a single DC source as the first DC source which would be available from batteries or fuel cells, with the remaining () DC sources being capacitors. This scheme can simultaneously maintain the capacitors of DC voltage level and produce a nearly sinusoidal output voltage due to its high number of output levels. In this context, high performances and efficient torque and flux control are obtained, enabling a DTC solution for hybrid multilevel inverter powered induction motor drives intended for electric vehicle propulsion. Simulations and experiments show that the proposed multilevel inverter and control scheme are effective and very attractive for embedded systems such as automotive applications.


Author(s):  
Thomas Strasser ◽  
Alois Zoitl ◽  
Martijn Rooker

Future manufacturing is envisioned to be highly flexible and adaptable. New technologies for efficient engineering of reconfigurable systems and their adaptations are preconditions for this vision. Without such solutions, engineering adaptations of Industrial Process Measurement and Control Systems (IPMCS) will exceed the costs of engineered systems by far and the reuse of equipment will become inefficient. Especially the reconfiguration of control applications is not sufficiently solved by state-of-the-art technology. This chapter gives an overview of the use of reconfiguration applications for zero-downtime system reconfiguration of control applications on basis of the standard IEC 61499 which provides a reference model for distributed and reconfigurable control systems. A new approach for the reconfiguration of IEC 61499 based control application and the corresponding modeling is discussed. This new method significantly increases engineering efficiency and reuse in component-based IPMCS.


2008 ◽  
Vol 24 (12) ◽  
pp. 2941-2947 ◽  
Author(s):  
Ana Nilce Silveira Maia-Elkhoury ◽  
Waneska A. Alves ◽  
Márcia Leite de Sousa-Gomes ◽  
Joana Martins de Sena ◽  
Expedito A. Luna

The urbanization of visceral leishmaniasis in Brazil has been related to environmental changes, migration, interaction and spread of sylvatic reservoirs and infected dogs to areas with no transmission, and adaptation of the vector Lutzomyia longipalpis to the peridomiciliary environment. From 1980 to 2005, Brazil recorded 59,129 cases of visceral leishmaniasis, 82.5% of which in the Northeast region. Visceral leishmaniasis gradually spread to other regions of the country: in 1998 these other regions reported 15% of all cases, but by 2005 this proportion had increased to 44%. From 1998 to 2005, indigenous cases were reported in 1,904 different municipalities of the country (34.2%). Reservoir and vector control pose major challenges for disease control, since there is a need for better knowledge of vector behavior in urban areas, and control activities involve high operational costs. In recent years the Brazilian Ministry of Health has supported research on the laboratory diagnosis of infection and disease in humans and dogs, treatment of patients, evaluation of the effectiveness of control strategies, and development of new technologies that could contribute to the surveillance and control of visceral leishmaniasis in the country.


2015 ◽  
Vol 713-715 ◽  
pp. 930-933
Author(s):  
Ya Ai Chen ◽  
Lu Shi Wang ◽  
Jing Hua Zhou

Micro-grid is to integrate a variety of distributed energy resources to weaken the adverse effects of decentralized distributed generation on a large grid, effective way to fully exploit the economic benefits of distributed generation.When large grid power quality appear, failure, power outages and other problems, micro-grid based on local information can be quickly switched to the state from the network, and under the jurisdiction of the load especially important to provide power to support the load, to avoid accidents.Therefore, micro-grid has become an important research focus and direction of development of distributed power generation field.The main thesis of the existing micro-grid operation control strategies to summarize, summarize, and control the operation of the micro-grid reference when choosing strategies.


2012 ◽  
Vol 562-564 ◽  
pp. 1602-1605
Author(s):  
Cheng Qun Li ◽  
Cui Yu Zhou

Based on the relationship between the motor torque of each side and electric current when the electric vehicle turns, this article puts forward a control scheme of electronic differential which is used to regulate current and control torque, according to the micro electric vehicle with a double-wheel motor driven. In addition, the article makes detailed analysis for the electronic differential control process.


2020 ◽  
Vol 53 (6) ◽  
pp. 925-930
Author(s):  
Narendra Kumar Muthukuri ◽  
Rajanand Patnaik Narasipuram ◽  
Subbarao Mopidevi

In recent years Multilevel Inverter (MLI) getting in popular due to its performance in field of medium and high-power applications. Many MLI’s like Diode-clamped, cascaded H-bridge, flying capacitor and hybrid cascaded H-bridge are introduced in 1970’s. But due to the draw backs like harmonic distortions researchers are concentrated on novel topologies. Recently nested configuration is gaining attention to researchers due to it is having an advantage of 3-phase design with a smaller number of components compared to traditional MLI topologies. Hence, this paper investigates the performance an advanced MLI named as Nested topology for 72V electric vehicle (EV) motor drive application for 1kW/1500 RPM system. It can generate near-sinusoidal voltages with only fundamental switching frequency, there is no electromagnetic interference (EMI) and also it gives easy operating EV and safer conditions. Furthermore, this paper inspects the analysis, benefits and control scheme for nested MLI for the use of EV motor drive applications. The simulations are carried out using Matlab/Simlink.


Author(s):  
Polu Veera Pratap ◽  
S. Sridhar

Multilevel inverters have been widely used for high-voltage and high-power applications. Their perf0rmance is greatly superi0r t0 that 0f c0nventi0nal tw0-level inverters due t0 their reduced t0tal harm0nic dist0rti0n (THD),. This t0p0l0gy requires fewer c0mp0nents when c0mpared t0 di0de clamped, flying capacit0r and Bridgeless cascaded inverters and it requires fewer carrier signals and gate drives. Theref0re, the 0verall c0st and circuit c0mplexity are greatly reduced. This paper presents a n0vel reference and multicarrier based PWM scheme It als0 c0mpares the perf0rmance 0f the pr0p0sed scheme with that 0f c0nventi0nal cascaded bridge less rectifier (CBR) multilevel inverters. finally Simulati0n results fr0m MATLAB/SIMULINK are presented t0 verify the perf0rmance 0f the Five-level Multilevel Inverter


Sign in / Sign up

Export Citation Format

Share Document