scholarly journals Mesh-Grounded Monopolar Hexagonal Microstrip Antenna for Artillery-Launched Observation Round

Electronics ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 1279
Author(s):  
Lee ◽  
Kim ◽  
Pyo

This paper presents a novel low-profile microstrip antenna with an omnidirectional radiation pattern for an artillery-launched observation round. The proposed antenna consists of one centered hexagonal patch for a feeding network and six periodic arrays of a trapezoid patch for a radiator. The trapezoid patch is equal to a half-sized hexagonal patch based on geometrical symmetry. A gap-coupled one-hexagonal patch and six trapezoid patches are supported on a nonfundamental TM02 mode for vertically polarized omnidirectional radiation patterns. In addition, a meshed ground structure for the proposed antenna is employed to improve the impedance bandwidth. The thin metal wires that are formed by the meshed ground structure yield six trapezoid slot arrays for the feeding network and three triangular slot arrays for the radiator on the ground plane. To verify the feasibility of the meshed ground structure, the mesh width, denoted by w, was investigated theoretically and optimized carefully to enlarge the impedance bandwidth of the proposed antenna. Finally, the proposed antenna, with a mesh width of 0.2 mm, successfully demonstrated excellent monopolar radiation at a resonant frequency of 5.84 GHz, a realized gain of 5.27 dBi, and an impedance bandwidth of 452 MHz from 5.583 GHz to 6.035 GHz with respect to 7.78% at a center frequency of 5.809 GHz.

2014 ◽  
Vol 7 (2) ◽  
pp. 179-184 ◽  
Author(s):  
Sanyog Rawat ◽  
Kamalesh Kumar Sharma

A design of annular ring microstrip antenna with finite ground structure is proposed in this paper. The proposed geometry offers impedance bandwidth of 2.362 GHz and has stable radiation patterns for all resonant frequencies in the operational band. It is also found that shape and dimension of the finite ground plane is a key factor in improving the bandwidth of the proposed geometry. The geometry is low profile and has simple structure, therefore can be used for lower band of ultra-wideband applications.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Yongjiu Li ◽  
Long Li ◽  
Xiwang Dai ◽  
Cheng Zhu ◽  
Feifei Huo ◽  
...  

A low profile chip-package stacked-patch antenna is proposed by using low temperature cofired ceramic (LTCC) technology. The proposed antenna employs a stacked-patch to achieve two operating frequency bands and enhance the bandwidth. The height of the antenna is decreased to 4.09 mm (aboutλ/25 at 2.45 GHz) due to the shorted pin. The package is mounted on a 44 × 44 mm2ground plane to miniaturize the volume of the system. The design parameters of the antenna and the effect of the antenna on chip-package cavity are carefully analyzed. The designed antenna operates at a center frequency of 2.45 GHz and its impedance bandwidth(S11< -10 dB)is 200 MHz, resulting from two neighboring resonant frequencies at 2.41 and 2.51 GHz, respectively. The average gain across the frequency band is about 5.28 dBi.


Author(s):  
Yusnita Rahayu ◽  
Raja D.A ◽  
Yoga B. P

In this paper, a compact design of transparent rectangular microstrip antenna with a slotted ground plane has been designed and evaluated to support Intelligent Transportation System (ITS). The proposed antenna consists of a single element using transparent conductive film AgHT-4 layered on a plain glass substrate, fed by a single 50 Ω SMA port. The antenna is working on 5.9 GHz based on IEEE 802.11p for Wireless Access in Vehicular Environment (WAVE) Standard. The design concept is to have arc shape slot out of the ground plane of a microstrip patch antenna to enable wideband frequency. The proposed antenna provides ultra wide impedance bandwidth around 750 MHz (5.48-6.23 GHz) at a center frequency of 5.9 GHz. The proposed transparent antenna has a directivity gain of 6.266 dBi.


2019 ◽  
Vol 11 (10) ◽  
pp. 1069-1074 ◽  
Author(s):  
Zicheng Niu ◽  
Hou Zhang ◽  
Qiang Chen ◽  
Tao Zhong

AbstractIn this paper, a novel decoupling technique for closely spaced E-plane patch antennas using defect ground structure (DGS) is proposed. The electric field coupling between the antennas is suppressed by etching DGS which consists of a pair of rectangular slots and four stubs on the ground plane. Moreover, unlike the other methods, the DGS is not etched in the middle of the antennas but loaded along the outer edge of the radiated patch. Thus, through the adopted technology the distance between the antenna elements is reduced and the isolation is increased. To validate the improvements by adopting the proposed technology, the array with DGS loading has been fabricated and then measured. The measurement results show that designed antennas have 95 MHz 10-dB impedance bandwidth, which is 25 MHz higher than that of the antenna without DGS. More importantly, isolation improvements have been increased from 8.5 to 31.3 dB by using the decoupling technique when the antennas are placed with a 0.032 λ0 edge-to-edge distance, where λ0 is the free-space wavelength. Therefore, this technique can be widely applied to improve isolation in a compact and low profile antenna system.


2017 ◽  
Vol 10 (4) ◽  
pp. 453-459
Author(s):  
Haixiong Li ◽  
Bozhang Lan ◽  
Jun Ding ◽  
Chenjiang Guo

In this paper, a high gain broadband low profile microstrip antenna with the dual-layered substrate and four parasitic metal elements is presented. The proposed microstrip antenna is mainly composed of four parts: four circular parasitic metal patches with dual arced breaches, a rectangular metal patch sandwiched between substrates, a square ground plane, and two-square substrates. The circular parasitic elements are the main radiation structure and determine the characteristics of the proposed antenna are closely related to the parasitic elements. The proposed antenna has been fabricated for experimental measurement. The reflection coefficient, radiation pattern, radiation efficiency, and gain have been studied in detail. The simulated and measured impedance bandwidth is 27.0% (3.30–4.33 GHz), the maximum realized peak gain reaches up to 6.52 dBi at the frequency of 3.65 GHz. The radiation pattern has a single peak which is perpendicular to the surface of the substrate. The proposed antenna is suitable to be applied in the 5G mobile or WiMAX wireless communication. Dual antenna with a pair of parasitic elements has been investigated numerically to explain the principle of the proposed antenna.


2019 ◽  
Vol 11 (7) ◽  
pp. 719-728 ◽  
Author(s):  
Ankan Bhattacharya ◽  
Bappadittya Roy ◽  
Rafael F. S. Caldeirinha ◽  
Anup K. Bhattacharjee

AbstractIn this article, an extremely wideband, isolation-enhanced, low-profile “Multiple-Input-Multiple-Output” (MIMO) antenna along with dual-band-notched features has been investigated. The antenna proposed herein, possesses two mutually orthogonal staircase-etched radiators for achieving a wide bandwidth. The radiating elements are placed mutually perpendicular in order to achieve polarization diversity and high isolation, i.e. for minimization of mutual coupling effect between adjacent radiating elements. The antenna exhibits an extremely wide frequency bandwidth covering 1.2–19.4 GHz except two frequency band notches centered at 3.5 and 5.5 GHz, respectively, originated due to the incorporation of a “Rectangular Complementary Split Ring Resonator (RCSRR)” structure and by etching dual “L-shaped” slits in the ground plane. The center frequency of the notched bands is adjusted by fine tuning of the dimensions of the incorporated band-notching structures. Isolation level (S21) better than −20 dB has been obtained due to the insertion of a “T-shaped” parasitic element as a decoupling structure. A prototype of the proposed antenna having dimension of 20 mm × 20 mm (0.08 λo × 0.08 λo) is fabricated and the antenna responses have been measured. Obtained results show that the miniaturized MIMO diversity antenna is undoubtedly a capable contender for communications supporting an extremely wide impedance bandwidth along with band-notched features for WLAN and WiMAX.


Open Physics ◽  
2018 ◽  
Vol 16 (1) ◽  
pp. 651-655 ◽  
Author(s):  
Yilin Liu ◽  
Kama Huang

Abstract A novel design of a coplanar waveguide (CPW) feed antenna array with circular polarization (CP) and a high front-to-back ratio is described. The proposed CP array is achieved by using a compact CPW–slotline transition network etched in the ground plane. The measured results show that this kind of feeding method can improve the impedance bandwidth, as well as the axial ratio bandwidth of the CP antenna array and provide adequate gain. The proposed array can achieve a 6.08% impedance bandwidth and a 4.10% CP bandwidth. Details of the antenna design and experimental results are presented and discussed.


2016 ◽  
Vol 9 (3) ◽  
pp. 621-627 ◽  
Author(s):  
Idris Messaoudene ◽  
Tayeb A. Denidni ◽  
Abdelmadjid Benghalia

In this paper, a microstrip-fed U-shaped dielectric resonator antenna (DRA) is simulated, designed, and fabricated. This antenna, in its simple configuration, operates from 5.45 to 10.8 GHz. To enhance its impedance bandwidth, the ground plane is first modified, which leads to an extended bandwidth from 4 to 10.8 GHz. Then by inserting a rectangular metallic patch inside the U-shaped DRA, the bandwidth is increased more to achieve an operating band from 2.65 to 10.9 GHz. To validate these results, an experimental antenna prototype is fabricated and measured. The obtained measurement results show that the proposed antenna can provide an ultra-wide bandwidth and a symmetric bidirectional radiation patterns. With these features, the proposed antenna is suitable for ultra-wideband applications.


2020 ◽  
Vol 16 (1) ◽  
pp. 15-22
Author(s):  
Ajay Kumar Dwivedi ◽  
Brijesh Mishra ◽  
Vivek Singh ◽  
Pramod Narayan Tripathi ◽  
Ashutosh Kumar Singh

AbstractA novel design of ultra-wideband CPW-fed compact monopole patch antenna is presented in the article. The size of the antenna is 22 × 18 × 1.6 mm and it operates well over an ultra-wideband frequency range 4.86–13.66 GHz (simulated) and 4.93–13.54 GHz (measured) covering C, X and partial Ku band applications. The proposed design consists of a defected ground plane and U-shape radiating patch along with two square shape parasitic patches in order to achieve the ultra-wideband (UWB) operations. The performance matrix is validated through measured results that indicate the wide impedance bandwidth (93.2 %) with maximum gain of 4 dBi with nearly 95 % of maximum radiation efficiency; moreover, the 3D gain pattern manifests approximately omni-directional pattern of the proposed design. The prototype has been modelled using HFSS (High Frequency Structure Simulator-18) by ANSYS, fabricated and tested using vector network analyser E5071C.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Hongmei Liu ◽  
Chenhui Xun ◽  
Shaojun Fang ◽  
Zhongbao Wang

A low-profile dual-band circular polarized (CP) patch antenna with wide half-power beamwidths (HPBWs) is presented for CNSS applications. Simple stacked circular patches are used to achieve dual-band radiation. To enhance the HPBW for the two operation bands, a dual annular parasitic metal strip (D-APMS) combined with reduced ground plane (R-GP) is presented. A single-input feed network based on the coupled line transdirectional (CL-TRD) coupler is also proposed to provide two orthogonal modes at the two frequency bands simultaneously. Experimental results show that the 10 dB impedance bandwidth is 32.7%. The 3 dB axial ratio (AR) bandwidths for the lower and upper bands are 4.1% and 6.5%, respectively. At 1.207 GHz, the antenna has the HPBW of 123° and 103° in the xoz and yoz planes, separately. And the values are 127° and 113° at 1.561 GHz.


Sign in / Sign up

Export Citation Format

Share Document