Annular ring microstrip patch antenna with finite ground plane for ultra-wideband applications

2014 ◽  
Vol 7 (2) ◽  
pp. 179-184 ◽  
Author(s):  
Sanyog Rawat ◽  
Kamalesh Kumar Sharma

A design of annular ring microstrip antenna with finite ground structure is proposed in this paper. The proposed geometry offers impedance bandwidth of 2.362 GHz and has stable radiation patterns for all resonant frequencies in the operational band. It is also found that shape and dimension of the finite ground plane is a key factor in improving the bandwidth of the proposed geometry. The geometry is low profile and has simple structure, therefore can be used for lower band of ultra-wideband applications.

Electronics ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 1279
Author(s):  
Lee ◽  
Kim ◽  
Pyo

This paper presents a novel low-profile microstrip antenna with an omnidirectional radiation pattern for an artillery-launched observation round. The proposed antenna consists of one centered hexagonal patch for a feeding network and six periodic arrays of a trapezoid patch for a radiator. The trapezoid patch is equal to a half-sized hexagonal patch based on geometrical symmetry. A gap-coupled one-hexagonal patch and six trapezoid patches are supported on a nonfundamental TM02 mode for vertically polarized omnidirectional radiation patterns. In addition, a meshed ground structure for the proposed antenna is employed to improve the impedance bandwidth. The thin metal wires that are formed by the meshed ground structure yield six trapezoid slot arrays for the feeding network and three triangular slot arrays for the radiator on the ground plane. To verify the feasibility of the meshed ground structure, the mesh width, denoted by w, was investigated theoretically and optimized carefully to enlarge the impedance bandwidth of the proposed antenna. Finally, the proposed antenna, with a mesh width of 0.2 mm, successfully demonstrated excellent monopolar radiation at a resonant frequency of 5.84 GHz, a realized gain of 5.27 dBi, and an impedance bandwidth of 452 MHz from 5.583 GHz to 6.035 GHz with respect to 7.78% at a center frequency of 5.809 GHz.


2016 ◽  
Vol 9 (3) ◽  
pp. 621-627 ◽  
Author(s):  
Idris Messaoudene ◽  
Tayeb A. Denidni ◽  
Abdelmadjid Benghalia

In this paper, a microstrip-fed U-shaped dielectric resonator antenna (DRA) is simulated, designed, and fabricated. This antenna, in its simple configuration, operates from 5.45 to 10.8 GHz. To enhance its impedance bandwidth, the ground plane is first modified, which leads to an extended bandwidth from 4 to 10.8 GHz. Then by inserting a rectangular metallic patch inside the U-shaped DRA, the bandwidth is increased more to achieve an operating band from 2.65 to 10.9 GHz. To validate these results, an experimental antenna prototype is fabricated and measured. The obtained measurement results show that the proposed antenna can provide an ultra-wide bandwidth and a symmetric bidirectional radiation patterns. With these features, the proposed antenna is suitable for ultra-wideband applications.


2020 ◽  
Vol 16 (1) ◽  
pp. 15-22
Author(s):  
Ajay Kumar Dwivedi ◽  
Brijesh Mishra ◽  
Vivek Singh ◽  
Pramod Narayan Tripathi ◽  
Ashutosh Kumar Singh

AbstractA novel design of ultra-wideband CPW-fed compact monopole patch antenna is presented in the article. The size of the antenna is 22 × 18 × 1.6 mm and it operates well over an ultra-wideband frequency range 4.86–13.66 GHz (simulated) and 4.93–13.54 GHz (measured) covering C, X and partial Ku band applications. The proposed design consists of a defected ground plane and U-shape radiating patch along with two square shape parasitic patches in order to achieve the ultra-wideband (UWB) operations. The performance matrix is validated through measured results that indicate the wide impedance bandwidth (93.2 %) with maximum gain of 4 dBi with nearly 95 % of maximum radiation efficiency; moreover, the 3D gain pattern manifests approximately omni-directional pattern of the proposed design. The prototype has been modelled using HFSS (High Frequency Structure Simulator-18) by ANSYS, fabricated and tested using vector network analyser E5071C.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Yongjiu Li ◽  
Long Li ◽  
Xiwang Dai ◽  
Cheng Zhu ◽  
Feifei Huo ◽  
...  

A low profile chip-package stacked-patch antenna is proposed by using low temperature cofired ceramic (LTCC) technology. The proposed antenna employs a stacked-patch to achieve two operating frequency bands and enhance the bandwidth. The height of the antenna is decreased to 4.09 mm (aboutλ/25 at 2.45 GHz) due to the shorted pin. The package is mounted on a 44 × 44 mm2ground plane to miniaturize the volume of the system. The design parameters of the antenna and the effect of the antenna on chip-package cavity are carefully analyzed. The designed antenna operates at a center frequency of 2.45 GHz and its impedance bandwidth(S11< -10 dB)is 200 MHz, resulting from two neighboring resonant frequencies at 2.41 and 2.51 GHz, respectively. The average gain across the frequency band is about 5.28 dBi.


2018 ◽  
Vol 7 (5) ◽  
pp. 7-13 ◽  
Author(s):  
S. A. Shandal ◽  
Y. S. Mezaal ◽  
M. F. Mosleh ◽  
M. A. Kadim

In this paper, a pentagon slot inside fractal circular patch microstrip resonator to design compact antenna over partial ground plane is introduced using 3rd iteration of adopted fractal geometry. This antenna is modeled on FR4 substrate with a size of (20 x 18) mm2, thickness of 1.5mm, permittivity of 4.3 and loss tangent of 0.02. The used type of feeding is microstrip line feed. It is designed to operate at wide frequency range of (4.5-9.3) GHz at resonant frequencies of 5.7GHz and 7.9GHz with impedance bandwidth of 4.8 GHz. Both lengths of ground plane Lg and width of feed line Wf are optimized in order to acquire optimum bandwidth. The simulated return loss values are -33 and -41 dB at two resonant frequencies of 5.7 and 7.9 GHz with gain of 3.2 dB. The simulated results offered noteworthy compatibility with measured results. Also, the proposed wideband microstrip antenna has substantial compactness that can be integrated within numerous wireless devices and systems.


2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Dattatreya Gopi ◽  
Appala Raju Vadaboyina ◽  
J. R. K. Kumar Dabbakuti

AbstractA simple low profile defected ground structure based monopole circular-shaped patch antenna is proposing for ultrawide-band applications. The design allows for a simple and compact structure on the FR-4 substrate material. The proposed design initially has a meager antenna gain and bandwidth. To increase the antenna bandwidth and gain, the defective ground structure is implemented with four dumble-shaped slots. Parametric analysis is considered to find the radius of circular patch for tuning of UWB frequency applications. The proposed MCP antenna resonates at 2.9 GHz, 9.1 GHz frequencies with a S11 of − 34.84 dB, − 33.74 dB, respectively, and achieves 8.1 GHz (2.5–10.6 GHz) impedance bandwidth concerning the − 10 dB reference line of the reflection coefficient. The gains are 8.4 dBi, 8.2 dBi for the two resonant frequencies, and the radiation patterns are semi-omnidirectional, omnidirectional. The proposed antenna has-been validated by observing good agreement between the simulation and the measured results.


2018 ◽  
Vol 7 (4) ◽  
pp. 85-92 ◽  
Author(s):  
S. Shandal ◽  
Y. S. Mezaal ◽  
M. Kadim ◽  
M. Mosleh

In this paper, a miniature rectangular microstrip antenna over partial ground plane is presented by utilizing a space-filling property of fractal geometry in this design. It is simulated by High Frequency Software Simulator (HFSS) software, fabricated and tested by Vector Network Analyzer (VNA).Two types of slots are introduced in order to enhance antenna parameters such as bandwidth and return loss S1.1. This antenna is fabricated on FR4 substrate with a small size of (18 x 16 x 1.5) mm3, 1.5mm substrate thickness, 4.3 permittivity and 0.02 loss tangent. To feed this antenna,  microstrip line feed is used. This antenna is implemented for wide bandwidth (4.8-11.6) GHz, and has three resonant frequencies at 5.5GHz, 8.3GHz and 10.7GHz with impedance bandwidth of 6.8GHz. The gap value g between partial ground plane and rectangular patch at top layer is optimized in order to achieve optimal simulated return loss S1.1 is (-46,-32,-14) dB at three resonant frequencies (5.5, 8.3, 10.7) GHz and optimal radiation efficiency of 93.42% with gain of 3.63dB. The simulated results have tolerable agreement with measured results. This antenna is suitable for wireless computer applications within  C and X band  communications.


2018 ◽  
Vol 7 (2.8) ◽  
pp. 365
Author(s):  
B T P Madhav ◽  
M Purna Kishore

In this article, a simple curved elliptical coplanar wave guide fed antenna is proposed for wideband applications. An elliptical shaped model of multiband antenna is converted as notch band antenna with placement of slots in the radiating structure and by incorporating defected ground structure, bandwidth enhancement isattained in the proposed model. In short, the multiband antennais modelled in to wideband antenna with bandwidth of 17.8 GHz and impedance bandwidth of 67%.By placing defected ground structure adjacent to feed line on the ground plane, additional resonant frequencies are raised and enhancement in the bandwidth is obtained. The measured results are providing excellent correlation with simulation results obtained from HFSS and CST tools.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Chandan Kumar Ghosh ◽  
Arabinda Roy ◽  
Susanta Kumar Parui

Elevated-coplanar-waveguide- (ECPW-) fed microstrip antenna with inverted “G” slots in the back conductor is presented. It is modeled and analyzed for the application of multiple frequency bands. The changes in radiation and the transmission characteristics are investigated by the introduction of the slots in two different positions at the ground plane (back conductor). The proposed antenna without slots exhibits a stop band from 2.55 GHz to 4.25 GHz while introducing two slots on the back conductor, two adjacent poles appear at central frequencies of 3.0 GHz and 3.9 GHz, respectively, and the antenna shows the ultra-wideband (UWB) characteristics. The first pole appears at the central frequency of 3.0 GHz and covers the band width of 950 MHz, and the second pole exists at a central frequency of 3.90 GHz covering a bandwidth of 750 MHz. Experimental result shows that impedance bandwidth of 129% (S11<-10 dB) is well achieved when the antenna is excited with both slots. Compared to most of the previously reported ECPW structures, the impedance bandwidth of this antenna is increased and also the size of the antenna becomes smaller and more suitable for many wireless applications like PCS (1850–1990 MHz), WLAN (2.4–2.484 GHz), WiMAX (2.5–2.69 GHz and 5.15–5.85 GHz), and also X-band communication.


Author(s):  
Madan Kumar Sharma ◽  
Mithilesh Kumar ◽  
J.P. Saini

This article describes how a compact, low profile Ultra-wideband (UWB) monopole antenna with a defected ground structure is designed and demonstrated experimentally. The design and experimentation activities have been carried out with the help of a CST Microwave studio tool. The UWB characteristics of the proposed antenna are achieved with a modification of the ground structure of the referenced antenna with novel L shaped defected ground structure (DGS). Both antennas are fabricated on the same substrate with the dimensions of 28.3 x 24 mm2. The comparative analysis of the results for both antennas clearly indicate that the proposed UWB monopole antenna enhanced the impedance bandwidth from 3.7 GHz – 14.9 GHz without DGS and to 3.4 GHz – 20 GHz with DGS. The enhanced bandwidth, constant group delay and good radiation characteristics of the proposed antenna have identified it as a good candidate for portable UWB applications.


Sign in / Sign up

Export Citation Format

Share Document