Low-profile, extremely wideband, dual-band-notched MIMO antenna for UWB applications

2019 ◽  
Vol 11 (7) ◽  
pp. 719-728 ◽  
Author(s):  
Ankan Bhattacharya ◽  
Bappadittya Roy ◽  
Rafael F. S. Caldeirinha ◽  
Anup K. Bhattacharjee

AbstractIn this article, an extremely wideband, isolation-enhanced, low-profile “Multiple-Input-Multiple-Output” (MIMO) antenna along with dual-band-notched features has been investigated. The antenna proposed herein, possesses two mutually orthogonal staircase-etched radiators for achieving a wide bandwidth. The radiating elements are placed mutually perpendicular in order to achieve polarization diversity and high isolation, i.e. for minimization of mutual coupling effect between adjacent radiating elements. The antenna exhibits an extremely wide frequency bandwidth covering 1.2–19.4 GHz except two frequency band notches centered at 3.5 and 5.5 GHz, respectively, originated due to the incorporation of a “Rectangular Complementary Split Ring Resonator (RCSRR)” structure and by etching dual “L-shaped” slits in the ground plane. The center frequency of the notched bands is adjusted by fine tuning of the dimensions of the incorporated band-notching structures. Isolation level (S21) better than −20 dB has been obtained due to the insertion of a “T-shaped” parasitic element as a decoupling structure. A prototype of the proposed antenna having dimension of 20 mm × 20 mm (0.08 λo × 0.08 λo) is fabricated and the antenna responses have been measured. Obtained results show that the miniaturized MIMO diversity antenna is undoubtedly a capable contender for communications supporting an extremely wide impedance bandwidth along with band-notched features for WLAN and WiMAX.

2014 ◽  
Vol 8 (1) ◽  
pp. 117-124 ◽  
Author(s):  
Mohammed Younus Talha ◽  
Kamili Jagadeesh Babu ◽  
Rabah W. Aldhaheri

A novel compact multiple-input–multiple-output (MIMO) antenna system operating from 5 to 7.3 GHz is proposed for wireless applications. It comprises of two similar antennas with microstrip feeding and radiating patches developed on a reduced ground plane. The developed antenna system resonates at a dual-band of 5.4 and 6.8 GHz frequencies, giving an impedance bandwidth of 38% (based on S11 < −10 dB). The unique structure of the proposed MIMO system gives a reduced mutual coupling of −27 dB at 5.4 GHz resonant frequency and −19 dB at 6.8 GHz resonant frequency and in the entire operating band the coupling is maintained well below −16 dB. The envelope correlation coefficient of the proposed MIMO system is calculated and is found to be less than 0.05 in the operating band. The measured and simulation results are found in good agreement.


Sensors ◽  
2020 ◽  
Vol 20 (3) ◽  
pp. 624 ◽  
Author(s):  
Pawan Kumar ◽  
Shabana Urooj ◽  
Fadwa Alrowais

A compact, low-profile, coplanar waveguide (CPW)-fed quad-port multiple-input–multiple-output (MIMO)/diversity antenna with triple band-notched (Wi-MAX, WLAN, and X-band) characteristics is proposed for super-wideband (SWB) applications. The proposed design contains four similar truncated–semi-elliptical–self-complementary (TSESC) radiating patches, which are excited through tapered CPW feed lines. A complementary slot matching the radiating patch is introduced in the ground plane of the truncated semi-elliptical antenna element to obtain SWB. The designed MIMO/diversity antenna displays a bandwidth ratio of 31:1 and impedance bandwidth (|S11| ≤ − 10 dB) of 1.3–40 GHz. In addition, a complementary split-ring resonator (CSRR) is implanted in the resonating patch to eliminate WLAN (5.5 GHz) and X-band (8.5 GHz) signals from SWB. Further, an L-shaped slit is used to remove Wi-MAX (3.5 GHz) band interferences. The MIMO antenna prototype is fabricated, and a good agreement is achieved between the simulated and experimental outcomes.


2019 ◽  
Vol 2019 ◽  
pp. 1-7
Author(s):  
Mohamed M. Morsy

A compact dual-band multiple-input-multiple-output (MIMO) antenna for LTE700, GSM1900, and UMTS applications with high isolation is presented. To enhance impedance matching and multiband operation, two inverted L-shaped monopoles are printed in the circular slot of the ground plane. The single element design is mirrored along the diameter of the circular slot of the ground plane. A strip is employed between the two radiators in order to mitigate the mutual coupling effect and enhance the impedance matching at operating bandwidths. Moreover, two slits are inserted in the ground plane in order to disturb the current distribution between radiating elements, and hence, the isolation between elements is improved. The measured 10 dB return loss bandwidth is 100 MHz (698–798 MHz) and 359 MHz (1765-2124 MHz) over the LTE700, GSM1900, and UMTS bands. The measured isolation between the two ports is less than -13 dB over the LTE700 bands while it is recorded to be less than -17 dB over the GSM1900 and UMTS bands. In addition, parametric studies of the proposed MIMO antenna are performed, and the surface current analysis is discussed to show the effect of the isolation structure. The radiation patterns are measured, and envelope correlation coefficient is calculated. The simulated results are in good agreement with measurements.


Author(s):  
B. Anudeep ◽  
K. Krishnamoorthy ◽  
P. H. Rao

Abstract A low-profile, wideband dual-polarized 1 × 2 multiple-input-multiple-output (MIMO) antenna with frequency selective surface (FSS) decoupling technique is presented. Low profile is realized with two different artificial magnetic conductor (AMC) cells out of which one operates at 3.5 GHz and other with dual band at 3.1 and 4.5 GHz. The proposed antenna height is maintained at 0.125λ0 which is significantly reduced when compared with the conventional perfect electric conductor (PEC) ground plane. Wideband dual polarization is enabled by two pairs of bow-tie antenna elements surrounded by a square ring placed in the orthogonal orientation. To mitigate the near-field coupling in 1 × 2 MIMO an FSS wall is constructed with wide band stop characteristics from 2.85 to 4.75 GHz. Measured results show by inserting FSS wall vertically, coupling reduction is improved by 27 dB over the existing coupling and the antenna exhibits a bandwidth of 57.14% (2.95–4.95 GHz) for VSWR<2 with port isolation of more than 25 dB for entire band of operation.


2017 ◽  
Vol 10 (3) ◽  
pp. 360-367 ◽  
Author(s):  
Sonika Priyadarsini Biswal ◽  
Sushrut Das

A compact printed quadrant shaped monopole antenna is introduced in this paper as a good prospect for ultra wideband- multiple-input multiple-output (UWB-MIMO) system. The proposed MIMO antenna comprises two perpendicularly oriented monopoles to employ polarization diversity. An open circuit folded stub is extended from the ground plane of each radiating element to enhance the impedance bandwidth satisfying the UWB criteria. Two ‘L’ shaped slots are further etched on the radiator to provide good isolation performance between two radiators. The desirable radiator performances and diversity performances are ensured by simulation and/or measurement of the reflection coefficient, radiation pattern, realized peak gain, envelope correlation coefficient (ECC), diversity gain, mean effective gain (MEG) ratio and channel capacity loss (CCL). Results indicate that the proposed antenna exhibits 2.9–11 GHz 10 dB return loss bandwidth, mutual coupling <−20 dB, ECC < 0.003, MEG ratio ≈ 1, and CCL < 0.038 Bpsec/Hz, making it a good candidate for UWB and MIMO diversity application.


2015 ◽  
Vol 6 (3) ◽  
pp. 1-15 ◽  
Author(s):  
Wan Noor Najwa Wan Marzudi ◽  
Zuhairiah Zainal Abidin ◽  
Siti Zarina Mohd Muji ◽  
Yue Ma ◽  
Raed A. Abd-Alhameed

This paper presented a planar printed multiple-input-multiple-output (MIMO) antenna with a dimension of 100 x 45 mm2. It composed of two crescent shaped radiators placed symmetrically with respect to the ground plane. Neutralization line applied to suppress mutual coupling. The proposed antenna examined both theoretically and experimentally, which achieves an impedance bandwidth of 18.67% (over 2.04-2.46 GHz) with a reflection coefficient < -10 dB and mutual coupling minimization of < -20 dB. An evaluation of MIMO antennas is presented, with analysis of correlation coefficient, total active reflection coefficient (TARC), capacity loss and channel capacity. These characteristics indicate that the proposed antenna suitable for some wireless applications.


2019 ◽  
Vol 57 (2) ◽  
pp. 223
Author(s):  
Hoa Nguyen Thi Quynh ◽  
Sy Tuan Tran ◽  
Huu Lam Phan ◽  
Duy Tung Phan

A compact three-port metamaterial multiple-input-multiple-output (MIMO) antenna using complementary split-ring resonator (CSRR) loaded ground have demonstrated in order to miniaturize the size and improve the antenna performance. The antenna is designed on FR4 material and simulated by HFSS software. By loading CSRRs in the ground plane, the size reduction of 77% of the individual patch antenna element is achieved, which appeared to be the major reason for the obtained the compact MIMO antenna. Furthermore, the simulated results show that the proposed MIMO antenna achieves the total gain higher than 5 dB, the isolation less than -11 dB, the envelope correlation coefficient (ECC) value lower than 0.015, and the bandwidth of 100 MHz through the whole WLAN band from 2.4 GHz to 2.484 GHz, indicating promises for WLAN applications.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Hongmei Liu ◽  
Chenhui Xun ◽  
Shaojun Fang ◽  
Zhongbao Wang

A low-profile dual-band circular polarized (CP) patch antenna with wide half-power beamwidths (HPBWs) is presented for CNSS applications. Simple stacked circular patches are used to achieve dual-band radiation. To enhance the HPBW for the two operation bands, a dual annular parasitic metal strip (D-APMS) combined with reduced ground plane (R-GP) is presented. A single-input feed network based on the coupled line transdirectional (CL-TRD) coupler is also proposed to provide two orthogonal modes at the two frequency bands simultaneously. Experimental results show that the 10 dB impedance bandwidth is 32.7%. The 3 dB axial ratio (AR) bandwidths for the lower and upper bands are 4.1% and 6.5%, respectively. At 1.207 GHz, the antenna has the HPBW of 123° and 103° in the xoz and yoz planes, separately. And the values are 127° and 113° at 1.561 GHz.


2019 ◽  
Vol 16 (10) ◽  
pp. 4242-4248
Author(s):  
Manoj Kapil ◽  
Manish Sharma

In this research article, a compact MIMO (Multiple-Input-Multiple-Output) antenna with inclusion of two notched bands characteristics is presented. Designed MIMO antenna consist of dual radiating patches printed on one surface of the substrate which covers measured wide impedance bandwidth of 2.88 GHz–19.98 GHz and satisfies bandwidth ratio more than 10:1 for superwideband with compact size of 18 mm × 34 mm. Two radiating patch are placed symmetrically for MIMO configuration and notched bands to eliminate WiMAX/C and WLAN bands are obtained by attaching inverted T-shaped stub on radiating patch and etched inverted U-shape slit in microstrip feed. Isolation between the two radiating patch is maintained by adding two L-shaped stub in slotted rectangular ground plane. Measured radiation pattern are stable in operating band and offers maximum 4.23 dBi and 89% gain and radiation efficiency respectively. Moreover, antenna shows good diversity performance with Envelope-Correlation-Coefficient (ECC) < 0.5, Directive-Gain (DG) > 9.95 dB and Total-Active-Reflection Coefficient (TARC) < -30 dB.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Yongjiu Li ◽  
Long Li ◽  
Xiwang Dai ◽  
Cheng Zhu ◽  
Feifei Huo ◽  
...  

A low profile chip-package stacked-patch antenna is proposed by using low temperature cofired ceramic (LTCC) technology. The proposed antenna employs a stacked-patch to achieve two operating frequency bands and enhance the bandwidth. The height of the antenna is decreased to 4.09 mm (aboutλ/25 at 2.45 GHz) due to the shorted pin. The package is mounted on a 44 × 44 mm2ground plane to miniaturize the volume of the system. The design parameters of the antenna and the effect of the antenna on chip-package cavity are carefully analyzed. The designed antenna operates at a center frequency of 2.45 GHz and its impedance bandwidth(S11< -10 dB)is 200 MHz, resulting from two neighboring resonant frequencies at 2.41 and 2.51 GHz, respectively. The average gain across the frequency band is about 5.28 dBi.


Sign in / Sign up

Export Citation Format

Share Document