scholarly journals SCATTER PHY: An Open Source Physical Layer for the DARPA Spectrum Collaboration Challenge

Electronics ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 1343 ◽  
Author(s):  
Felipe A. P. de Figueiredo ◽  
Dragoslav Stojadinovic ◽  
Prasanthi Maddala ◽  
Ruben Mennes ◽  
Irfan Jabandžić ◽  
...  

DARPA, the Defense Advanced Research Projects Agency from the United States, has started the Spectrum Collaboration Challenge with the aim to encourage research and development of coexistence and collaboration techniques of heterogeneous networks in the same wireless spectrum bands. Team SCATTER has been participating in the challenge since its beginning, back in 2016. SCATTER’s open-source software defined physical layer (SCATTER PHY) has been developed as a standalone application, with the ability to communicate with higher layers through a set of well defined messages (created with Google’s Protocol buffers) and that exchanged over a ZeroMQ bus. This approach allows upper layers to access it remotely or locally and change all parameters in real time through the control messages. SCATTER PHY runs on top of USRP based software defined radio devices (i.e., devices from Ettus or National Instruments) to send and receive wireless signals. It is a highly optimized and real-time configurable SDR based PHY layer that can be used for the research and development of novel intelligent spectrum sharing schemes and algorithms. The main objective of making SCATTER PHY available to the research and development community is to provide a solution that can be used out of the box to devise disruptive algorithms and techniques to optimize the sub-optimal use of the radio spectrum that exists today. This way, researchers and developers can mainly focus their attention on the development of smarter (i.e., intelligent algorithms and techniques) spectrum sharing approaches. Therefore, in this paper, we describe the design and main features of SCATTER PHY and showcase several experiments performed to assess the effectiveness and performance of the proposed PHY layer.

Author(s):  
Felipe Augusto Pereira de Figueiredo ◽  
Dragoslav Stojadinovic ◽  
Prasanthi Maddala ◽  
Ruben Mennes ◽  
Irfan Jabandžic ◽  
...  

DARPA, the Defense Advanced Research Projects Agency from the United States, has started the Spectrum Collaboration Challenge with the aim to encourage research and development of coexistence and collaboration techniques of heterogeneous networks in the same wireless spectrum bands. Team SCATTER has been participating in the challenge since its beginning, back in 2016. SCATTER’s open-source software-defined physical layer (SCATTER PHY) has been developed as a standalone application, with the ability to communicate with higher layers of SCATTER’s system via ZeroMQ, and uses USRP X310 software-defined radio devices to send and receive wireless signals. SCATTER PHY relies on USRP’s ability to schedule timed commands, uses both physical interfaces of the radio devices, utilizes the radio’s internal FPGA board to implement custom high-performance filtering blocks in order to increase its spectral efficiency as well as enable reliable usage of neighboring spectrum bands. This paper describes the design and main features of SCATTER PHY and showcases the experiments performed to verify the achieved benefits.


2021 ◽  
pp. 1-9
Author(s):  
Katherine E. Irimata ◽  
Paul J. Scanlon

The National Center for Health Statistics’ (NCHS) Research and Development Survey (RANDS) is a series of commercial panel surveys collected for methodological research purposes. In response to the COVID-19 pandemic, NCHS expanded the use of RANDS to rapidly monitor aspects of the public health emergency. The RANDS during COVID-19 survey was designed to include COVID-19 related health outcome and cognitive probe questions. Rounds 1 and 2 were fielded June 9–July 6, 2020 and August 3–20, 2020 using the AmeriSpeak® Panel. Existing and new approaches were used to: 1) evaluate question interpretation and performance to improve future COVID-19 data collections and 2) to produce a set of experimental estimates for public release using weights which were calibrated to NCHS’ National Health Interview Survey (NHIS) to adjust for potential bias in the panel. Through the expansion of the RANDS platform and ongoing methodological research, NCHS reported timely information about COVID-19 in the United States and demonstrated the use of recruited panels for reporting national health statistics. This report describes the use of RANDS for reporting on the pandemic and the associated methodological survey design decisions including the adaptation of question evaluation approaches and calibration of panel weights.


2020 ◽  
Author(s):  
Roxanne Heston ◽  
Remco Zwetsloot

Many factors influence where U.S. tech multinational corporations decide to conduct their global artificial intelligence research and development (R&D). Company AI labs are spread all over the world, especially in North America, Europe and Asia. But in contrast to AI labs, most company AI staff remain concentrated in the United States. Roxanne Heston and Remco Zwetsloot explain where these companies conduct AI R&D, why they select particular locations, and how they establish their presence there. The report is accompanied by a new open-source dataset of more than 60 AI R&D labs run by these companies worldwide.


This chapter explores the concept of the Cyber Physical Internet (CPI) and discusses the design necessities of it. In addition, it provides the restrictions of the present networking concepts to satisfy these necessities. The structural design of protocol stack for CPI has an extra layer Cyber-Physical Layer (CY-PHY Layer) to offer a conceptual description of the properties and type of cyber physical information. To enable standard communication between heterogeneous systems, Cyber Physical System-Interconnection Protocol is used. This protocol is mainly designed for special CPSs, which require overall instruction and performance guarantee for cyber physical interaction. The main objective of this protocol is to offer CPSs heterogeneity at three different levels: function interoperability, policy regulation, and performance guarantee.


2015 ◽  
Vol 12 (1) ◽  
Author(s):  
I Wayan Sutaya

Tujuan dari penelitian ini adalah untuk mengimplementasikan RTOS (Real Time Operating System) pada perangkat elektronik berbasis mikrokontroler AVR 8 bit sehingga didapatkan peningkatan kinerja pada perangkat tersebut. RTOS yang digunakan adalah freeRTOS dimana RTOS ini mendukung mikrokontroler 8 bit, berukuran kecil, dan bersifat open source. Hasil penelitian ini berguna bagi praktisi-praktisi elektronika dalam hal menekan biaya produksi pembuatan perangkat elektronik berbasis mikrokontroler 8 bit karena resource yang digunakan bisa dikurangi. Metode yang digunakan adalah metode penelitian pengembangan (Research and development) dengan cara membuat studi kasus perangkat elektronik yang berbasis mikrokontroler. Perangkat elektronik yang dibuat adalah unit kendali elektronik pada sepeda motor. Selanjutnya mikrokontroler pada perangkat ini diprogram dengan menggunakan dua skenario. Skenario pertama adalah tanpa menggunakan RTOS dan skenario kedua dengan menggunakan RTOS. Dari dua skenario ini dilakukan pengujian dan analisis untuk mengetahui besar peningkatan kinerja yang didapat.


Author(s):  
I Wayan Sutaya

Tujuan dari penelitian ini adalah untuk mengimplementasikan RTOS (Real Time Operating System) pada perangkat elektronik berbasis mikrokontroler AVR 8 bit sehingga didapatkan peningkatan kinerja pada perangkat tersebut. RTOS yang digunakan adalah freeRTOS dimana RTOS ini mendukung mikrokontroler 8 bit, berukuran kecil, dan bersifat open source. Hasil penelitian ini berguna bagi praktisi-praktisi elektronika dalam hal menekan biaya produksi pembuatan perangkat elektronik berbasis mikrokontroler 8 bit karena resource yang digunakan bisa dikurangi. Metode yang digunakan adalah metode penelitian pengembangan (Research and development) dengan cara membuat studi kasus perangkat elektronik yang berbasis mikrokontroler. Perangkat elektronik yang dibuat adalah unit kendali elektronik pada sepeda motor. Selanjutnya mikrokontroler pada perangkat ini diprogram dengan menggunakan dua skenario. Skenario pertama adalah tanpa menggunakan RTOS dan skenario kedua dengan menggunakan RTOS. Dari dua skenario ini dilakukan pengujian dan analisis untuk mengetahui besar peningkatan kinerja yang didapat.


2018 ◽  
Vol 62 (2) ◽  
pp. 97-107 ◽  
Author(s):  
Nina Keith

Abstract. The positive effects of goal setting on motivation and performance are among the most established findings of industrial–organizational psychology. Accordingly, goal setting is a common management technique. Lately, however, potential negative effects of goal-setting, for example, on unethical behavior, are increasingly being discussed. This research replicates and extends a laboratory experiment conducted in the United States. In one of three goal conditions (do-your-best goals, consistently high goals, increasingly high goals), 101 participants worked on a search task in five rounds. Half of them (transparency yes/no) were informed at the outset about goal development. We did not find the expected effects on unethical behavior but medium-to-large effects on subjective variables: Perceived fairness of goals and goal commitment were least favorable in the increasing-goal condition, particularly in later goal rounds. Results indicate that when designing goal-setting interventions, organizations may consider potential undesirable long-term effects.


2000 ◽  
Vol 16 (2) ◽  
pp. 107-114 ◽  
Author(s):  
Louis M. Hsu ◽  
Judy Hayman ◽  
Judith Koch ◽  
Debbie Mandell

Summary: In the United States' normative population for the WAIS-R, differences (Ds) between persons' verbal and performance IQs (VIQs and PIQs) tend to increase with an increase in full scale IQs (FSIQs). This suggests that norm-referenced interpretations of Ds should take FSIQs into account. Two new graphs are presented to facilitate this type of interpretation. One of these graphs estimates the mean of absolute values of D (called typical D) at each FSIQ level of the US normative population. The other graph estimates the absolute value of D that is exceeded only 5% of the time (called abnormal D) at each FSIQ level of this population. A graph for the identification of conventional “statistically significant Ds” (also called “reliable Ds”) is also presented. A reliable D is defined in the context of classical true score theory as an absolute D that is unlikely (p < .05) to be exceeded by a person whose true VIQ and PIQ are equal. As conventionally defined reliable Ds do not depend on the FSIQ. The graphs of typical and abnormal Ds are based on quadratic models of the relation of sizes of Ds to FSIQs. These models are generalizations of models described in Hsu (1996) . The new graphical method of identifying Abnormal Ds is compared to the conventional Payne-Jones method of identifying these Ds. Implications of the three juxtaposed graphs for the interpretation of VIQ-PIQ differences are discussed.


Sign in / Sign up

Export Citation Format

Share Document