scholarly journals Broadband Millimeter-Wave Power Amplifier Using Modified 2D Distributed Power Combining

Electronics ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 899
Author(s):  
Jihoon Kim

A broadband millimeter-wave (mmWave) power amplifier (PA) was implemented using a modified 2D distributed power combining technique. The proposed power combining was based on a single-ended dual-fed distributed combining (SEDFDC) design technique using zero-phase shifting (ZPS) transmission lines. To improve the input/output power distribution of each power cell within a wide frequency range, N/2-way power dividers/combiners were inserted into the distributed combining structure. Modified ZPS lines also simplified the combining structure and curbed phase variation according to the frequency. These modifications enabled power combining cells to increase without degrading the power bandwidth. The proposed PA was fabricated with a commercial 0.15 μm GaAs pseudo high electron-mobility transistor (pHEMT) monolithic microwave-integrated circuit (MMIC) process. It exhibited 20.3 to 24.2 dBm output power (Pout), 12.9 to 21.8 dB power gain, and 5.2% to 12.7% power-added efficiency (PAE) between 26 and 56 GHz.

2010 ◽  
Vol 2 (3-4) ◽  
pp. 317-324 ◽  
Author(s):  
Paul Saad ◽  
Christian Fager ◽  
Hossein Mashad Nemati ◽  
Haiying Cao ◽  
Herbert Zirath ◽  
...  

This paper presents the design and implementation of an inverse class-F power amplifier (PA) using a high power gallium nitride high electron mobility transistor (GaN HEMT). For a 3.5 GHz continuous wave signal, the measurement results show state-of-the-art power-added efficiency (PAE) of 78%, a drain efficiency of 82%, a gain of 12 dB, and an output power of 12 W. Moreover, over a 300 MHz bandwidth, the PAE and output power are maintained at 60% and 10 W, respectively. Linearized modulated measurements using 20 MHz bandwidth long-term evolution (LTE) signal with 11.5 dB peak-to-average ratio show that −42 dBc adjacent channel power ratio (ACLR) is achieved, with an average PAE of 30%, −47 dBc ACLR with an average PAE of 40% are obtained when using a WCDMA signal with 6.6 dB peak-to-average ratio (PAR).


2021 ◽  
Vol 11 (19) ◽  
pp. 9017
Author(s):  
Jinho Jeong ◽  
Yeongmin Jang ◽  
Jongyoun Kim ◽  
Sosu Kim ◽  
Wansik Kim

In this paper, a high-power amplifier integrated circuit (IC) in gallium-nitride (GaN) on silicon (Si) technology is presented at a W-band (75–110 GHz). In order to mitigate the losses caused by relatively high loss tangent of Si substrate compared to silicon carbide (SiC), low-impedance microstrip lines (20–30 Ω) are adopted in the impedance matching networks. They allow for the impedance transformation between 50 Ω and very low impedances of the wide-gate transistors used for high power generation. Each stage is matched to produce enough power to drive the next stage. A Lange coupler is employed to combine two three-stage common source amplifiers, providing high output power and good input/output return loss. The designed power amplifier IC was fabricated in the commercially available 60 nm GaN-on-Si high electron mobility transistor (HEMT) foundry. From on-wafer probe measurements, it exhibits the output power higher than 26.5 dBm and power added efficiency (PAE) higher than 8.5% from 88 to 93 GHz with a large-signal gain > 10.5 dB. Peak output power is measured to be 28.9 dBm with a PAE of 13.3% and a gain of 9.9 dB at 90 GHz, which corresponds to the power density of 1.94 W/mm. To the best of the authors’ knowledge, this result belongs to the highest output power and power density among the reported power amplifier ICs in GaN-on-Si HEMT technologies operating at the W-band.


Electronics ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 1588
Author(s):  
Sungjae Oh ◽  
Eunjoo Yoo ◽  
Hansik Oh ◽  
Hyungmo Koo ◽  
Jaekyung Shin ◽  
...  

In this paper, a frequency selective degeneration technique using a parallel network with a resistor and capacitor is proposed for a 6–18 GHz GaAs pseudomorphic high electron mobility transistor (pHEMT) broadband power amplifier integrated circuit (PAIC). The proposed degeneration network is applied to the source of the transistor to flatten the frequency response of the transistor in conjunction with feedback and resistor biasing circuits. An almost uniform frequency response was achieved at the wide frequency band through optimizing the values of the capacitor and resistor for the degeneration circuit. Single-section matching networks for small chip sizes were adopted for the two-stage amplifier following the flat frequency characteristics of the degenerated transistor. The proposed broadband PAIC for the 6 to 18 GHz band was fabricated using a 0.15 μm GaAs pHEMT process and had a chip size of 1.03 × 0.87 mm2. The PAIC exhibited gain of 15 dB to 17.2 dB, output power of 20.5 dBm to 22.1 dBm, and linear output power of 11.9 dBm to 13.45 dBm, which satisfies the IMD3 of −30 dBc in the 6–18 GHz band. Flatness for the gain and output power was achieved as ±1.1 dB and ±0.8 dB, respectively.


2020 ◽  
Vol 30.8 (147) ◽  
pp. 46-50
Author(s):  
Duy Manh Luong ◽  
◽  
Huy Hoang Nguyen

This study presents a design procedure to obtain high-efficiency for microwave power amplifier. The designed amplifier uses a GaN high electron mobility transistor as an active device. Matching networks including input and output networks are realized using Megtron6 substrate microstrip lines. The designed amplifier operates at 2.1 GHz band. The simulated results show that the amplifier delivers a maximum power-added efficiency of 73.2% at output power and power gain of 47.8 dBm and 13.8 dB, respectively. This promising designed performance makes this amplifier to be an excellent candidate for use in modern wireless communication systems like radar, mobile network, and satellite communications.


2018 ◽  
Vol 18 (11) ◽  
pp. 7451-7454
Author(s):  
Quan Wang ◽  
Xiaoliang Wang ◽  
Hongling Xiao ◽  
Cuimei Wang ◽  
Lijuan Jiang ◽  
...  

Micromachines ◽  
2018 ◽  
Vol 9 (12) ◽  
pp. 619 ◽  
Author(s):  
Seil Kim ◽  
Min-Pyo Lee ◽  
Sung-June Hong ◽  
Dong-Wook Kim

In this paper, we present a Ku-band 50 W internally-matched power amplifier that asymmetrically combines the power transistor cells of the GaN high electron mobility transistor (HEMT) (CGHV1J070D) from Wolfspeed. The amplifier is designed using a large-signal transistor cell model in the foundry process, and asymmetric power combining, which consists of a slit pattern, oblique wire bonding and an asymmetric T-junction, is applied to obtain the amplitude/phase balance of the combined signals at the transistor cell combining position. Input and output matching circuits are implemented using a thin film process on a titanate substrate and an alumina substrate with the relative dielectric constants of 40 and 9.8, respectively. The pulsed measurement of a 330 μs pulse period and 6% duty cycle shows the maximum saturated output power of 57 to 66 W, drain efficiency of 40.3 to 46.7%, and power gain of 5.3 to 6.0 dB at power saturation from 16.2 to 16.8 GHz.


Electronics ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1378
Author(s):  
Hyosung Nam ◽  
Taejoo Sim ◽  
Junghyun Kim

This paper presents a novel multi-channel type RF source module with solid-state power amplifiers for plasma generators. The proposed module is consisted of a DC control part, RF source generation part, and power amplification part. A 2-stage power amplifier (PA) is combined with a gallium arsenide hetero bipolar transistor (GaAs HBT) as a drive PA and a gallium nitride high electron mobility transistor (GaN HEMT) as a main PA, respectively. By employing 8 channels, the proposed module secures better area coverage on the wafer during semiconductor processes such as chemical vapor deposition (CVD), etching and so on. Additionally, each channel can be maintained at a constant output power because they have a gain factor tunable by a variable gain amplifier (VGA). For that reason, it is possible to have uniform plasma density on the wafer. The operating sequence is controllable by an external DC control port. Moreover, copper–tungsten (CuW) heat spreaders were applied to prevent RF performance degradation from heat generated by the high power amplifier (HPA), and a water jacket was implemented at the bottom of the power amplification part for liquid cooling. Drawing upon the measurement results, the output power at each channel was over 43 dBm (20 W) and the drain efficiency was more than 50% at 2.4 GHz.


Electronics ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 99 ◽  
Author(s):  
Ruitao Chen ◽  
Ruchun Li ◽  
Shouli Zhou ◽  
Shi Chen ◽  
Jianhua Huang ◽  
...  

This paper presents an X-band 40 W power amplifier with high efficiency based on 0.25 μm GaN HEMT (High Electron Mobility Transistor) on SiC process. An equivalent RC (Resistance Capacitance) model is presented to provide accurate large-signal output impedances of GaN HEMTs with arbitrary dimensions. By introducing the band-pass filter topology, broadband impedance matching networks are achieved based on the RC model, and the power amplifier MMIC (Monolithic Microwave Integrated Circuit) with enhanced bandwidth is realized. The measurement results show that this power amplifier at 28 V operation voltage achieved over 40 W output power, 44.7% power-added efficiency and 22 dB power gain from 8 GHz to 12 GHz. The total chip size is 3.20 mm × 3.45 mm.


Micromachines ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 375
Author(s):  
Min-Pyo Lee ◽  
Seil Kim ◽  
Sung-June Hong ◽  
Dong-Wook Kim

In this paper, we demonstrate a compact 20-W GaN internally matched power amplifier for 2.5 to 6 GHz jammer systems which uses a high dielectric constant substrate, single-layer capacitors, and shunt/series resistors for low-Q matching and low-frequency stabilization. A GaN high-electron-mobility transistor (HEMT) CGH60030D bare die from Wolfspeed was used as an active device, and input/output matching circuits were implemented on two different substrates using a thin-film process, relative dielectric constants of which were 9.8 and 40, respectively. A series resistor of 2.1 Ω was chosen to minimize the high-frequency loss and obtain a flat gain response. For the output matching circuit, double λ/4 shorted stubs were used to supply the drain current and reduce the output impedance variation of the transistor between the low-frequency and high-frequency regions, which also made wideband matching feasible. Single-layer capacitors effectively helped reduce the size of the matching circuit. The fabricated GaN internally matched power amplifier showed a linear gain of about 10.2 dB, and had an output power of 43.3–43.9 dBm (21.4–24.5 W), a power-added efficiency of 33.4–49.7% and a power gain of 6.2–8.3 dB at the continuous-wave output power condition, from 2.5 to 6 GHz.


2018 ◽  
Vol 7 (5) ◽  
pp. 124-130 ◽  
Author(s):  
Y.-J. Lee ◽  
C.-Y. Chang ◽  
Y.-H. Chou ◽  
I-Y. Tarn ◽  
J. Y.-C. Yaung ◽  
...  

An X-band high-power amplifier (HPA) based on gallium nitride (GaN) high electron mobility transistors (HEMTs) has been developed for synthetic aperture radar (SAR) applications. A hybrid power combining technique, including microstrip circuits and waveguides, is used to design the HPA. For reducing the size, four 50 W GaN HEMTs cascaded with one 1-to-4 power divider and one 4-to-1 power combiner form a 4-way power combined PCB circuits. For combing the high power and driving an antenna, two PCB circuits are combined by magic-T waveguides. The transmission efficiency of the power combining is approximately 80%. In the 10% duty cycle (pulse width 100 us), the output power of the HPA is over 200 W across the band of 9.5–9.8 GHz. The maximum output power is 230 W at 9.5 GHz, and the power gain is 8.3 dB at 46.1°C.


Sign in / Sign up

Export Citation Format

Share Document