scholarly journals Novel Frequency-Selective Rasorber with Ultrawide Absorption Bandwidth Covering Both the X- and Ku-Bands

Electronics ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1449
Author(s):  
Jie Xiong ◽  
Yanjie Wu ◽  
Yu Mao ◽  
Feng Deng ◽  
Lijie Chen ◽  
...  

A novel dual-polarized transmissive/absorptive frequency-selective rasorber (FSR) with an ultrawide absorption spectrum covering both the X- and Ku-bands is proposed in this paper. The FSR is constructed from a bottom lossless transmission layer and a top lossy absorption layer, in which a resistor-loaded incurved square loop strip line structure is utilized to obtain an ultrawide absorption band. To quantitatively analyze its operation principle, an accurate equivalent circuit model of the proposed FSR was developed. A 2D prototype was designed, assembled, fabricated, and measured. The FSR exhibits an absorption band that ranges from 8.1 to 19.1 GHz (81%) under normal incidence, whereas the passband insertion loss at 4.5 GHz is less than 0.45 dB. The total thickness of the FSR is only 5.1 mm, which keeps low profile characteristics. The simulation agrees well with the measured results.


Frequenz ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Zain Ul Abidin ◽  
Qunsheng Cao ◽  
Gulab Shah ◽  
Zaheer Ahmed Dayo ◽  
Muhammad Ejaz

Abstract In this paper, a miniaturized bandstop frequency selective surface (FSS) with high angular stability is presented. Each FSS element consists of four sets each consisting eight octagonal concentric interconnected loops. The four sets are connected with each other through outermost octagonal loop. The unit size is miniaturized to 0.066 λ0 at the resonant frequency of 1.79 GHz. The proposed configuration achieves excellent angular stability (only 0.025 GHz resonant frequency deviation is observed upto 83° oblique angles). The working mechanism of FSS is explained with the help of equivalent circuit model (ECM), electric field distribution, and corresponding surface current distribution. A prototype of the designed bandstop FSS is fabricated to verify the simulated frequency response. The experimental results are consistent with the simulation results. Simple geometry, low profile, high angular stability, and compact cell size are prominent features of the proposed structure.



2021 ◽  
pp. 1-14
Author(s):  
Wenjian Gong ◽  
Xinwei Chen ◽  
Liping Han ◽  
Li Li ◽  
Rongcao Yang ◽  
...  


2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Semyoung Oh ◽  
Hanjun Lee ◽  
Joo-Ho Jung ◽  
Gil-Young Lee

This letter presents a novel wideband miniaturized-element frequency selective surface (MEFSS). The simulation and measurement results show that the bandwidth of the proposed MEFSS is remarkably enhanced compared to that of an original second-order MEFSS while its size and total thickness are still small. A parametric study is also conducted to understand the operating mechanism of the proposed structure. The phenomenon observed in the parametric study is explained with an equivalent circuit model.



2020 ◽  
Vol 2020 ◽  
pp. 1-8 ◽  
Author(s):  
Mingxi Zhang ◽  
Binchao Zhang ◽  
Xiaochun Liu ◽  
Shining Sun ◽  
Cheng Jin

A method for designing a dual-polarized wideband absorber with low profile by using dual-resistor-loaded metallic strips is proposed in this paper. Each unit cell consists of a resistive sheet with dual-resistor-loaded metallic strips and an underlying conducting plate. Two-dimensional arrays of two unequal metallic strips are printed on the dielectric substrate, and two resistors are embedded in the metallic strips. By properly designing the resonant frequencies of these metallic strips, a wide absorption band with three resonances is obtained. An equivalent circuit model is introduced, and the current distributions are examined to understand the physical mechanism of the proposed absorber. An example of the absorber is fabricated and measured to verify our designed concept. The measured results show that the wideband absorption performance with a fractional bandwidth of 129% under the normal incidence and the stable angular response are achieved. In addition, the proposed absorber has a low profile with 0.08λL, where λL is the wavelength at the lowest operating frequency.



2020 ◽  
Vol 2020 ◽  
pp. 1-8 ◽  
Author(s):  
Yu Qiang ◽  
Dongfang Zhou ◽  
Qikun Liu ◽  
Zhenning Yao

A novel low-profile dual-polarization frequency-selective rasorber (FSR) with a transmissive window in the absorption band is proposed in this paper. Based on the equivalent circuit model (ECM), the principles of the impedance design are theoretically derived. Then, a two-layer structure model is constructed. The top layer is composed of a lossy three-legged loaded element (TLLE), and the bottom layer is composed of a square ring bandpass frequency-selective surface (FSS). Furthermore, the strips are folded to reduce the unit cell size to stabilize the angular response. The maximum stable response angle increases from 20 to 40° due to the miniaturized design under both TE and TM polarization. The experimental results of the prototype are in good agreement with the simulation results, which validates the rationality of our design.



Frequenz ◽  
2020 ◽  
Vol 74 (1-2) ◽  
pp. 25-31 ◽  
Author(s):  
Fei Wang

AbstractIn the paper, a tri-band angularly stable frequency selective surface (FSS) with controllable resonances for electromagnetic shielding is proposed. Different from traditional single-layer structure, the FSS proposed is based on cascaded structure that creates three adjustable blocking bands around frequency 5.93 GHz, 7.33 GHz and 9.17 GHz, respectively. The designed FSS has a low profile with thickness of λ0/100, where the λ0 represents wavelength of the first band-stop resonance frequency. Besides, the proposed FSS exhibits stable frequency response up to 70° with respect to different polarizations. Therefore, this FSS is flexible and can be used in electromagnetic shielding field where needs conformal screen. To investigate and understand the operating mechanism better, a equivalent circuit model (ECM) is deduced and given in the Section 2, the calculated results match the full-wave EM simulation results perfectly. Finally, a prototype of this FSS is fabricated and measured, the measurement results are in accordance with the simulation results.



2018 ◽  
Vol 2018 ◽  
pp. 1-6 ◽  
Author(s):  
Peng Zhao ◽  
Yihang Zhang ◽  
Rongrong Sun ◽  
Wen-Sheng Zhao ◽  
Yue Hu ◽  
...  

A compact frequency selective surface (FSS) for 5G applications has been designed based on 2.5-dimensional Jerusalem cross. The proposed element consists of two main parts: the successive segments of the metal traces placed alternately on the two surfaces of the substrate and the vertical vias connecting traces. Compared with previous published two-dimensional miniaturized elements, the transmission curves indicate a significant size reduction (1/26 wavelengths at the resonant frequency) and exhibit good angular and polarization stabilities. Furthermore, a general equivalent circuit model is established to provide direct physical insight into the operating principle of this FSS. A prototype of the proposed FSS has been fabricated and measured, and the results validate this design.





Author(s):  
Xiangkun Kong ◽  
Lingqi Kong ◽  
Shunliu Jiang ◽  
Xuemeng Wang ◽  
Yukun Zou ◽  
...  


2019 ◽  
Vol 61 (4) ◽  
pp. 1234-1238 ◽  
Author(s):  
Weiyang Yin ◽  
Hou Zhang ◽  
Tao Zhong ◽  
Xueliang Min


Sign in / Sign up

Export Citation Format

Share Document