scholarly journals Advanced Control for Electric Drives: Current Challenges and Future Perspectives

Electronics ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1762
Author(s):  
Adel Merabet

In the Special Issue “Advanced Control for Electric Drives”, the objective is to address a variety of issues related to advances in control techniques for electric drives, implementation challenges, and applications in emerging fields such as electric vehicles, unmanned aerial vehicles, maglev trains and motion applications. This issue includes 15 selected and peer-reviewed articles discussing a wide range of topics, where intelligent control, estimation and observation schemes were applied to electric drives for various applications. Different drives were studied such as induction motors, permanent magnet synchronous motors and brushless direct current motors.

2021 ◽  
Vol 12 (2) ◽  
pp. 57
Author(s):  
Yongping Cai ◽  
Yuefeng Cen ◽  
Gang Cen ◽  
Xiaomin Yao ◽  
Cheng Zhao ◽  
...  

Permanent Magnet Synchronous Motors (PMSMs) are widely used in electric vehicles due to their simple structure, small size, and high power-density. The research on the temperature monitoring of the PMSMs, which is one of the critical technologies to ensure the operation of PMSMs, has been the focus. A Pseudo-Siamese Nested LSTM (PSNLSTM) model is proposed to predict the temperature of the PMSMs. It takes the features closely related to the temperature of PMSMs as input and realizes the temperature prediction of stator yoke, stator tooth, and stator winding. An optimization algorithm of learning rate combined with gradual warmup and decay is proposed to accelerate the convergence during the training and improve the training performance of the model. Experimental results reveal the proposed method and Nested LSTM (NLSTM) achieves high accuracy by comparing with other intelligent prediction methods. Moreover, the proposed method is slightly better than NLSTM in temperature prediction of PMSMS.


2020 ◽  
Vol 12 (7) ◽  
pp. 168781402094432
Author(s):  
Xiaowei Xu ◽  
Xue Qiao ◽  
Nan Zhang ◽  
Jingyi Feng ◽  
Xiaoqing Wang

Permanent magnet synchronous motors are the main power output components of electric vehicles. Once a failure occurs, it will affect the vehicle’s power, stability, and safety. While as a complex field-circuit coupling system composed of machine-electric-magnetic-thermal, the permanent magnet synchronous motor of electric vehicle has various operating conditions and complicated condition environment. There are various forms of failure, and the signs of failure are crossed or overlapped. Randomness, secondary, concurrency, and communication characteristics make it difficult to diagnose faults. Based on the research of a list of related references, this article reviews the methods of intelligent fault diagnosis for electric vehicle permanent magnet synchronous motors. The research status and development trend of fault diagnosis are analyzed. It provides theoretical basis for motor fault diagnosis and health management in multi-variable working conditions and multi-physics environment.


Author(s):  
Xin Wang ◽  
C. Steve Suh

Permanent magnet synchronous motors are essential components in a wide range of applications in which their unique benefits are explored. However, in order for a permanent magnet synchronous motor to achieve satisfactory performance, particular control frameworks are essential. After all, permanent magnet synchronous motor is an AC machine, which is characterized by its complex structure and strongly coupled system states. Therefore, in order for it to achieve satisfactory dynamic performance, advanced control techniques are the only solution. This paper presents a precise speed control of permanent magnet synchronous motors using the nonlinear time-frequency control concept. The novel aspect of this nonlinear time-frequency control, which is an integration of discrete wavelet transformation and adaptive control, is its ability in analyzing the fundamental temporal and spectral qualities inherent of a permanent magnet synchronous motor and exerting control signals accordingly. Simulation results verifies that the proposed nonlinear time-frequency control scheme is feasible for alleviating the nonlinear behavior of the permanent magnet synchronous motor which hampers the tracking of speed with desired precision.


Power electronic technology made possible to evolve inverter fed electric drives. Permanent magnet synchronous motors (PMSM) are in much importance and are used often due to its performance characteristics. PMSM gives less noisy operation with faster and more efficient operation. PMSM needs a digital inverter for its operation. The paper analyzes nine-level inverter fed PMSM drive. Multi-carrier level-shifted technique is used to generate control pulses. Simulation work of the proposed concept is carried out and the results are presented using MATLAB/SIMULINK software.


Sign in / Sign up

Export Citation Format

Share Document