scholarly journals A Fast Steering Mirror Using a Compact Magnetic Suspension and Voice Coil Motors for Observation Satellites

Electronics ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1997
Author(s):  
Tadahiko Shinshi ◽  
Daisuke Shimizu ◽  
Kazuhide Kodeki ◽  
Kazuhiko Fukushima

Fast steering mirrors (FSMs) are used to correct images observed by satellites. FSMs need to have large apertures and realize high precision and the positioning of the mirror in the tip-tilt and axial directions needs to be highly precise and highly responsive in order to capture large-scale, high-resolution images. An FSM with a large-diameter mirror supported by a compact magnetic suspension and driven by long-stroke voice coil motors (VCMs) is proposed in this paper. The magnetic suspension and VCM actuators enable the mirror to be highly responsive and to have long-range movement in the tip-tilt and axial directions without friction and wear. The magnetic suspension is a hybrid that has active control in the lateral directions and passive support in the tip-tilt and axial directions. An experimental FSM with an 80 mm diameter dummy mirror was fabricated and tested. The mirror’s driving ranges in the tip-tilt and axial directions were ±20 mrad and ±500 μm, respectively. Furthermore, the servo bandwidths in the tip-tilt and axial directions were more than 1 kHz and 200 Hz, respectively.

Geosciences ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 123 ◽  
Author(s):  
Donatella Dominici ◽  
Sara Zollini ◽  
Maria Alicandro ◽  
Francesca Della Torre ◽  
Paolo Buscema ◽  
...  

Knowledge of a territory is an essential element in any future planning action and in appropriate territorial and environmental requalification action planning. The current large-scale availability of satellite data, thanks to very high resolution images, provides professional users in the environmental, urban planning, engineering, and territorial government sectors, in general, with large amounts of useful data with which to monitor the territory and cultural heritage. Italy is experiencing environmental emergencies, and coastal erosion is one of the greatest threats, not only to the Italian heritage and economy, but also to human life. The aim of this paper is to find a rapid way of identifying the instantaneous shoreline. This possibility could help government institutions such as regions, civil protection, etc., to analyze large areas of land quickly. The focus is on instantaneous shoreline extraction in Ortona (CH, Italy), without considering tides, using WorldView-2 satellite images (50-cm resolution in panchromatic and 2 m in multispectral). In particular, the main purpose of this paper is to compare commercial software and ACM filters to test their effectiveness.


Sensors ◽  
2019 ◽  
Vol 19 (12) ◽  
pp. 2671 ◽  
Author(s):  
Chunsheng Liu ◽  
Yu Guo ◽  
Shuang Li ◽  
Faliang Chang

You Only Look Once (YOLO) deep network can detect objects quickly with high precision and has been successfully applied in many detection problems. The main shortcoming of YOLO network is that YOLO network usually cannot achieve high precision when dealing with small-size object detection in high resolution images. To overcome this problem, we propose an effective region proposal extraction method for YOLO network to constitute an entire detection structure named ACF-PR-YOLO, and take the cyclist detection problem to show our methods. Instead of directly using the generated region proposals for classification or regression like most region proposal methods do, we generate large-size potential regions containing objects for the following deep network. The proposed ACF-PR-YOLO structure includes three main parts. Firstly, a region proposal extraction method based on aggregated channel feature (ACF) is proposed, called ACF based region proposal (ACF-PR) method. In ACF-PR, ACF is firstly utilized to fast extract candidates and then a bounding boxes merging and extending method is designed to merge the bounding boxes into correct region proposals for the following YOLO net. Secondly, we design suitable YOLO net for fine detection in the region proposals generated by ACF-PR. Lastly, we design a post-processing step, in which the results of YOLO net are mapped into the original image outputting the detection and localization results. Experiments performed on the Tsinghua-Daimler Cyclist Benchmark with high resolution images and complex scenes show that the proposed method outperforms the other tested representative detection methods in average precision, and that it outperforms YOLOv3 by 13.69 % average precision and outperforms SSD by 25.27 % average precision.


2021 ◽  
Vol 13 (11) ◽  
pp. 2052
Author(s):  
Dongchuan Yan ◽  
Guoqing Li ◽  
Xiangqiang Li ◽  
Hao Zhang ◽  
Hua Lei ◽  
...  

Dam failure of tailings ponds can result in serious casualties and environmental pollution. Therefore, timely and accurate monitoring is crucial for managing tailings ponds and preventing damage from tailings pond accidents. Remote sensing technology facilitates the regular extraction and monitoring of tailings pond information. However, traditional remote sensing techniques are inefficient and have low levels of automation, which hinders the large-scale, high-frequency, and high-precision extraction of tailings pond information. Moreover, research into the automatic and intelligent extraction of tailings pond information from high-resolution remote sensing images is relatively rare. However, the deep learning end-to-end model offers a solution to this problem. This study proposes an intelligent and high-precision method for extracting tailings pond information from high-resolution images, which improves deep learning target detection model: faster region-based convolutional neural network (Faster R-CNN). A comparison study is conducted and the model input size with the highest precision is selected. The feature pyramid network (FPN) is adopted to obtain multiscale feature maps with rich context information, the attention mechanism is used to improve the FPN, and the contribution degrees of feature channels are recalibrated. The model test results based on GoogleEarth high-resolution remote sensing images indicate a significant increase in the average precision (AP) and recall of tailings pond detection from that of Faster R-CNN by 5.6% and 10.9%, reaching 85.7% and 62.9%, respectively. Considering the current rapid increase in high-resolution remote sensing images, this method will be important for large-scale, high-precision, and intelligent monitoring of tailings ponds, which will greatly improve the decision-making efficiency in tailings pond management.


Author(s):  
M. Maboudi ◽  
J. Amini ◽  
M. Hahn

Updated road databases are required for many purposes such as urban planning, disaster management, car navigation, route planning, traffic management and emergency handling. In the last decade, the improvement in spatial resolution of VHR civilian satellite sensors – as the main source of large scale mapping applications – was so considerable that GSD has become finer than size of common urban objects of interest such as building, trees and road parts. This technological advancement pushed the development of “Object-based Image Analysis (OBIA)” as an alternative to pixel-based image analysis methods. <br><br> Segmentation as one of the main stages of OBIA provides the image objects on which most of the following processes will be applied. Therefore, the success of an OBIA approach is strongly affected by the segmentation quality. In this paper, we propose a purpose-dependent refinement strategy in order to group road segments in urban areas using maximal similarity based region merging. For investigations with the proposed method, we use high resolution images of some urban sites. The promising results suggest that the proposed approach is applicable in grouping of road segments in urban areas.


1990 ◽  
Vol 140 ◽  
pp. 373-374
Author(s):  
F. Yusef-Zadeh ◽  
Mark Morris ◽  
A.N. Lasenby ◽  
J.H. Seiradakis ◽  
R. Wielebinski

Continuum observations of the southern extension of the radio Arc located near 1~0.2° have been carried out at λ20 and 6cm using the VLA in its hybrid B/C and C/D array configurations. A number of long and narrow filaments have been identified on the negative latitude side of the plane. Some of the filaments appear to extend continuously into the radio continuum Arc and suggesting strongly that they are associated physically with the Arc. Other filaments appear isolated and thus have characteristics similar to those of the radio “threads” which have been seen near the Galactic center. These new threads and filaments are highly polarized at λ6cm and show rotation measures which vary between 300 and 3000 rad m−2. The details present in the high-resolution images of this region strengthen the hypotheses that the large field strength is dynamically important and that the large-scale geometry of the magnetic field is poloidal near the Galactic center.


Author(s):  
M. Maboudi ◽  
J. Amini ◽  
M. Hahn

Updated road databases are required for many purposes such as urban planning, disaster management, car navigation, route planning, traffic management and emergency handling. In the last decade, the improvement in spatial resolution of VHR civilian satellite sensors – as the main source of large scale mapping applications – was so considerable that GSD has become finer than size of common urban objects of interest such as building, trees and road parts. This technological advancement pushed the development of “Object-based Image Analysis (OBIA)” as an alternative to pixel-based image analysis methods. <br><br> Segmentation as one of the main stages of OBIA provides the image objects on which most of the following processes will be applied. Therefore, the success of an OBIA approach is strongly affected by the segmentation quality. In this paper, we propose a purpose-dependent refinement strategy in order to group road segments in urban areas using maximal similarity based region merging. For investigations with the proposed method, we use high resolution images of some urban sites. The promising results suggest that the proposed approach is applicable in grouping of road segments in urban areas.


2021 ◽  
Author(s):  
◽  
Martin Schiller

<p>A precise and accurate chronology of events that shaped the early Solar System is crucial in understanding its formation. One of the high-resolution chronometers that can be used to establish a relative chronology is the short-lived 26A1-to-26Mg clock (t1/2 = 0.73 Myr). This study developed new Mg chemical separation techniques for complex meteoritic matrices that produces Mg purities > 99% with > 99% yields. Mg was analysed by pseudo-high resolution multiple collector inductively coupled plasma mass spectrometry. These techniques make it possible to measure the mass-independent abundance of 26Mg (d26Mg*) that is related to 26A1 decay to very high-precision (+_ 0.0025 to 0.0050 per1000). These new techniques were then applied to three research objectives. The first part of this study presents Mg isotope data for thirteen bulk basaltic achondrites from at least 3 different parent bodies, as well as mineral isochrons for the angrites Sahara 99555 and D'Orbingy and the ungrouped NWA 2976. Model 26A1-26Mg ages based on bulk rock d26Mg* excesses for basaltic magmatism range from 2.6-4.1 Myr, respectively, after formation of calcium-aluminium-rich inclusions (CAIs) and the mineral isochrons for the angrites Sahara 99555 and D'Orbigny, and the ungrouped NWA 2976 yield apparent crystallisation ages of 5.06+0:06-0:05 Myr and 4.86+0:10-0:09 Myr after CAI formation. The elevated initial d26Mg* of the mineral isochron of NWA 2976 (+0.0175+ _0.0034h) likely reflects thermal resetting during an impact event and slow cooling on its parent body. However, in the case of the angrites, the marginally elevated initial d26Mg* (+0.0068 -0.0058h) could reflect d26Mg* in-growth in a magma ocean prior to eruption and crystallisation or in an older igneous protolith with super-chondritic A1/Mg prior to impact melting and crystallisation of these angrites, or partial internal re-equilibration of Mg isotopes after crystallisation. 26A1-26Mg model ages and an olivine+pyroxene+whole rock isochron for the angrites Sahara 99555 and  D'Orbigny are in good agreement with age constraints from 53Mn-53Cr and 182Hf-182W shortlived chronometers. This suggests that the 26A1-26Mg feldspar-controlled isochron ages for these angrites may be compromised by the partial resetting of feldspar Mg isotope systematics. However, even the 26A1-26Mg angrite model ages cannot be reconciled with Pb-Pb ages for Sahara 99555/D'Orbigny and CAIs, which are ca. 1.0 Myr too old (angrites) or too young (CAIs) for reasons that are not clear. This discrepancy might indicate that 26A1 was markedly lower (ca. 40%) in the planetesimal- and planet-forming regions of the proto-planetary disk as compared to CAIs, or that CAI Pb-Pb ages may not accurately date CAI formation. The second part of this thesis focuses on investigating the homogeneity of (26A1/27A1)0 and Mg isotopes in the proto-planetary disk and to test the validity of the short-lived 26A1-to-26Mg chronometer applied to meteorites. Nineteen chondrites representing nearly all major chondrite classes were analysed, including a step-leaching experiment on the CM2 chondrite Murchison. d26Mg* variations in leachates of Murchison representing acid soluble material are <_30 times smaller than reported for neutron-rich isotopes of Ti and Cr and do not reveal resolvable deficits in d26Mg* (-0.002 to +0.118h). Very small variations in d26Mg* anomalies in bulk chondrites (-0.006 to +0.019h) correlate with increasing 27A1/24Mg ratios and d50Ti, reflecting the variable presence of CAIs in some types of carbonaceous chondrites. Overall, the observed variations in d26Mg* are small and potential differences beyond those resulting from the presence of CAI-like material could not be detected. The results do not allow radical heterogeneity of 26A1 (>_+_ 30%) or measurable Mg nucleosynthetic heterogeneity (>_+_ 0.005h) to have existed on a planetesimal scale in the proto-planetary disk. The data imply that planets (i.e. chondrite parent bodies) accreted from material with initial (26Al/27A1)0 in the range of 2.1 to 6.7 x 10-5. The average stable Mg isotope composition of all analysed bulk chondrites is d25MgDSM-3 = -0.152 +_ 0.079 per1000(2 sd) and is indistinguishable from that of Earth's mantle. The third part of this study comprises a high-precision Mg isotope and mineral major and trace element study of 24 diogenites. Diogenites are ultramafic pyroxene and olivine cumulate rocks that are presumed to have resulted from magmatic differentiation on the howardite-eucritediogenite (HED) parent body. There are, however, no precise and independent age constraints on the formation of diogenites and, in particular, their age relationships to the basaltic eucrites. Mg isotope analysis of diogenites showed significant variability in d26Mg* anomalies that range from -0.0108 +_ 0.0018 to +0.0128 +_ 0.0018 per1000. These anomalies generally correlate with the mineral major and trace element chemistry and demonstrate active 26A1 decay during magmatic differentiation. Furthermore, it also suggests that diogenites are products of fractional crystallisation from a large scale magmatic system. Heating and melting of the HED parent body was driven by 26A1 decay and led to diogenite formation 0.7 to 1.3 Myr after CAIs depending on whether a heterogeneous or homogeneous (26Al/27A1)0 distribution is assumed between the proto-planetary disk and CAIs. These data show that diogenite formation pre-dates eucrite formation and indicate HED parent body accretion and core formation occurred within the first Myr of the Solar System. The lifetime of the magmatic evolution is less well constrained. The data suggest that the complete range of diogenites may have formed as quickly as ~ 0.2 Myr.</p>


Electronics ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1356
Author(s):  
Suting Chen ◽  
Dongwei Shao ◽  
Xiao Shu ◽  
Chuang Zhang ◽  
Jun Wang

With an ever-increasing resolution of optical remote-sensing images, how to extract information from these images efficiently and effectively has gradually become a challenging problem. As it is prohibitively expensive to label every object in these high-resolution images manually, there is only a small number of high-resolution images with detailed object labels available, highly insufficient for common machine learning-based object detection algorithms. Another challenge is the huge range of object sizes: it is difficult to locate large objects, such as buildings and small objects, such as vehicles, simultaneously. To tackle these problems, we propose a novel neural network based remote sensing object detector called full-coverage collaborative network (FCC-Net). The detector employs various tailored designs, such as hybrid dilated convolutions and multi-level pooling, to enhance multiscale feature extraction and improve its robustness in dealing with objects of different sizes. Moreover, by utilizing asynchronous iterative training alternating between strongly supervised and weakly supervised detectors, the proposed method only requires image-level ground truth labels for training. To evaluate the approach, we compare it against a few state-of-the-art techniques on two large-scale remote-sensing image benchmark sets. The experimental results show that FCC-Net significantly outperforms other weakly supervised methods in detection accuracy. Through a comprehensive ablation study, we also demonstrate the efficacy of the proposed dilated convolutions and multi-level pooling in increasing the scale invariance of an object detector.


2018 ◽  
Vol 9 (19) ◽  
pp. 1 ◽  
Author(s):  
Andrea Adami ◽  
Francesco Fassi ◽  
Luigi Fregonese ◽  
Mario Piana

<p>This article aims to critically examine the entire methodology of very large scale (1:1) surveying and documentation of mosaic surfaces. The term ‘survey’ should be read in its broadest and most complete and sense, including the phases of measurement and data processing as well as management and use of these data for the purposes of preservation and maintenance. The case study presented here took place at St Mark’s Basilica (<em>Basilica di San Marco</em>), in Venice, where mosaic flooring, wall and vault decorations have been surveyed on two separate occasions. These two experiences shared a common goal (a full-scale survey of the mosaic decorations) but differed in terms of the methodologies used, chiefly due to the technological developments of recent years. All this, therefore, lends itself to a methodological reflection and critique of the ways in which surveying technology has evolved over time. It enables to conduct surveys that would, just a few years ago, have been inconceivable due to their size and complexity. This article describes in detail current surveying processes, which includes the use of a multi-scale “image-based” approach, “re-topology” methods such as non-uniform rational B-spline (NURBS) and a tailor-made Building Information Modeling (BIM) system. This system allows the direct use of a three-dimensional (3D) model of the Basilica within the maintenance process of the monument itself with the options to georeferencing information, extract basic metric data and catalogue all its mosaics.</p><p><strong>Highlights:</strong></p><ul><li><p>Modern digital photogrammetric techniques enable the acquisition of very complex objects, not only in terms of form but also in terms of material.</p></li><li><p>To obtain high resolution orthophotos, it is necessary to accurately take care of all the stages of the process: photographic acquisition, surveying, modelling and orthographic reprojection.</p></li><li><p>High resolution images and detailed 3D models can benefit from a complex BIM system for the management of all data.</p></li></ul>


Sign in / Sign up

Export Citation Format

Share Document