scholarly journals Mechanical and Alkaline Hydrothermal Treated Corn Residue Conversion in to Bioenergy and Biofertilizer: A Resource Recovery Concept

Energies ◽  
2018 ◽  
Vol 11 (3) ◽  
pp. 516 ◽  
Author(s):  
◽  
◽  

In this research fall time harvested corn residue (CR) was first mechanically pretreated to produce 5 mm chopped and <500 µm ground particles, which underwent an anaerobic digestion (AD) process to produce biomethane and biofertilizer. Another sample of CR was pretreated by an alkaline hydrothermal (HT) process using 1%, 2% and 3% NaOH to produce solid biocarbon and the resulting alkaline hydrothermal process water (AHTPW), a co-product of biocarbon, underwent fast digestion under AD conditions to produce biomethane and biofertilizer. A predetermined HT process of 240 °C for 30 min was considered and the effect of alkali content on the HT process for biocarbon and biomethane product a rate of 8.21 MJ kg−1 and 9.23 MJ kg−1 of raw CR, respectively. Among the three selected alkaline HT processes, the 1% NaOH HT process produced the highest hybrid bioenergy of 11.39 MJ kg−1 of raw CR with an overall energy recovery of 62.82% of raw CR. The AHTPW of 2% and 3% NaOH HT-treated CR did not produce considerable amount of biomethane and their biocarbons contained 3.44 MJ kg−1 and 3.27 MJ kg−1 of raw CR of bioenergy, respectively. The biomethane produced from 5 mm chopped CR, <500 µm ground CR and 1% alkaline AHTPW for 30 days retention time were of 275.38 L kg−1 volatile solid (VS), 309.59 L kg−1 VS and 278.70 L kg−1 VS, respectively, compared to non-treated CR of 144–187 L kg−1 VS. Nutrient enriched AD digestate is useable as liquid fertilizer. Biocarbon, biomethane and biofertilizer produced from the 1% alkaline HT process at 240 °C for 30 min can reduce the greenhouse gas (GHG) emissions of Ontario.

2008 ◽  
Vol 57 (11) ◽  
pp. 1683-1692 ◽  
Author(s):  
Andrea Tilche ◽  
Michele Galatola

Anaerobic digestion is a well known process that (while still capable of showing new features) has experienced several waves of technological development. It was “born” as a wastewater treatment system, in the 1970s showed promise as an alternative energy source (in particular from animal waste), in the 1980s and later it became a standard for treating organic-matter-rich industrial wastewater, and more recently returned to the market for its energy recovery potential, making use of different biomasses, including energy crops. With the growing concern around global warming, this paper looks at the potential of anaerobic digestion in terms of reduction of greenhouse gas (GHG) emissions. The potential contribution of anaerobic digestion to GHG reduction has been computed for the 27 EU countries on the basis of their 2005 Kyoto declarations and using life cycle data. The theoretical potential contribution of anaerobic digestion to Kyoto and EU post-Kyoto targets has been calculated. Two different possible biogas applications have been considered: electricity production from manure waste, and upgraded methane production for light goods vehicles (from landfill biogas and municipal and industrial wastewater treatment sludges). The useful heat that can be produced as by-product from biogas conversion into electricity has not been taken into consideration, as its real exploitation depends on local conditions. Moreover the amount of biogas already produced via dedicated anaerobic digestion processes has also not been included in the calculations. Therefore the overall gains achievable would be even higher than those reported here. This exercise shows that biogas may considerably contribute to GHG emission reductions in particular if used as a biofuel. Results also show that its use as a biofuel may allow for true negative GHG emissions, showing a net advantage with respect to other biofuels. Considering also energy crops that will become available in the next few years as a result of Common Agricultural Policy (CAP) reform, this study shows that biogas has the potential of covering almost 50% of the 2020 biofuel target of 10% of all automotive transport fuels, without implying a change in land use. Moreover, considering the achievable GHG reductions, a very large carbon emission trading “value” could support the investment needs. However, those results were obtained through a “qualitative” assessment. In order to produce robust data for decision makers, a quantitative sustainability assessment should be carried out, integrating different methodologies within a life cycle framework. The identification of the most appropriate policy for promoting the best set of options is then discussed.


2018 ◽  
Vol 156 (6) ◽  
pp. 739-747 ◽  
Author(s):  
Jung-Jeng Su ◽  
Yen-Jung Chen

AbstractPig manure management systems in Taiwan differ from the model representing the Asian region developed by the Intergovernmental Panel on Climate Change (IPCC). The current study was undertaken to update greenhouse gas (GHG) emission factors of anaerobically treated piggery waste water by operating the conventional three-step piggery waste-water treatment system from selected pig farms located in northern, central and southern Taiwan. Biogas mass flow meters were installed to the outlet of anaerobic basins prior to the biogas pressure stabilizers for direct and reliable biogas measurement. The analytic results showed that average GHG emissions were 0.088, 0.128 and 0.066 m3/head/day in the northern, central and southern pig farms, respectively. Thus, the average emission levels of methane and nitrous oxide were 14.38 and 0.055 kg/head/year, respectively, from anaerobic digestion of piggery waste water for the three pig farms. The average removal efficiency of chemical oxygen demand, biochemical oxygen demand and suspended solids by anaerobic digestion process from the three pig farms was about 77, 93 and 70%, respectively.


Author(s):  
Franco Cecchi ◽  
Cristina Cavinato

Food waste, among the organic wastes, is one of the most promising substrates to be used as a renewable resource. Wide availability of food waste and the high greenhouse gas impacts derived from its inappropriate disposal, boost research through food waste valorization. Several innovative technologies are applied nowadays, mainly focused on bioenergy and bioresource recovery, within a circular economy approach. Nevertheless, food waste treatment should be evaluated in terms of sustainability and considering the availability of an optimized separate collection and a suitable treatment facility. Anaerobic codigestion of waste-activated sludge with food waste is a way to fully utilize available anaerobic digestion plants, increasing biogas production, energy, and nutrient recovery and reducing greenhouse gas (GHG) emissions. Codigestion implementation in Europe is explored and discussed in this paper, taking into account different food waste collection approaches in relation to anaerobic digestion treatment and confirming the sustainability of the anaerobic process based on case studies. Household food waste disposal implementation is also analyzed, and the results show that such a waste management system is able to reduce GHG emissions due to transport reduction and increase wastewater treatment performance.


2021 ◽  
Vol 13 (5) ◽  
pp. 2612
Author(s):  
Alun Scott ◽  
Richard Blanchard

Greenhouse gas (GHG) emissions from dairy farms are significant contributors to global warming. However, much of the published work on GHG reduction is focused on either methane (CH4) or nitrous oxide (N2O), with few, if any, considering the interactions that changes to farming systems can have on both gases. This paper takes the raw data from a year of activity on a 300-cow commercial dairy farm in Northern Ireland to more accurately quantify GHG sources by use of a simple predictive model based on IPCC methodology. Differing herd management policies are examined together with the impact of integrating anaerobic digestion (AD) into each farming system. Whilst significant success can be predicted in capturing CH4 and carbon dioxide (CO2) as biogas and preventing N2O emissions, gains made can be lost in a subsequent process, negating some or all of the advantage. The process of extracting value from the captured resource is discussed in light of current farm parameters together with indications of other potential revenue streams. However, this study has concluded that despite the significant potential for GHG reduction, there is little incentive for widespread adoption of manure-based farm-scale AD in the UK at this time.


2015 ◽  
Vol 73 (1) ◽  
pp. 137-143 ◽  
Author(s):  
H.-T. Liu ◽  
X.-J. Kong ◽  
G.-D. Zheng ◽  
C.-C. Chen

Sewage sludge is a considerable source of greenhouse gas (GHG) emission in the field of organic solid waste treatment and disposal. In this case study, total GHG emissions from sludge anaerobic digestion, including direct and indirect emissions as well as replaceable emission reduction due to biogas being reused instead of natural gas, were quantified respectively. The results indicated that no GHG generation needed to be considered during the anaerobic digestion process. Indirect emissions were mainly from electricity and fossil fuel consumption on-site and sludge transportation. Overall, the total GHG emission owing to relative subtraction from anaerobic digestion rather than landfill, and replaceable GHG reduction caused by reuse of its product of biogas, were quantified to be 0.7214 (northern China) or 0.7384 (southern China) MgCO2 MgWS−1 (wet sludge).


2008 ◽  
Vol 48 (2) ◽  
pp. 104 ◽  
Author(s):  
Mark Lieffering ◽  
Paul Newton ◽  
Jürgen H. Thiele

Greenhouse gas (GHG) emissions from New Zealand dairy farms are significant, representing nearly 35% of New Zealand’s total agricultural emissions. Although there is an urgent need for New Zealand to reduce agricultural GHG emissions in order to meet its Kyoto Protocol obligations, there are, as yet, few viable options for reducing farming related emissions while maintaining productivity. In addition to GHG emissions, dairy farms are also the source of other emissions, most importantly effluent from milking sheds and feed pads. It has been suggested that anaerobic digestion for biogas and energy production could be used to deal more effectively with dairy effluent while at the same time addressing concerns about farm energy supply. Dairy farms have a high demand for electricity, with a 300-cow farm consuming nearly 40 000 kWh per year. However, because only ~10% of the manure produced by the cows can be collected (e.g. primarily at milking times), a maximum of only ~16 000 kWh of electricity per year can be produced from the effluent alone. This means that anaerobic digestion/electricity generation schemes are currently economic only for farms with more than 1000 cows. A solution for smaller farms is to co-digest the effluent with unutilised pasture sourced on the farm, thereby increasing biogas production and making the system economically viable. A possible source of unutilised grass is the residual pasture left by the cows immediately after grazing. This residual can be substantial in the spring–early summer, when cow numbers (demand) can be less than the pasture growth rates (supply). The cutting of ungrazed grass (topping) is also a useful management tool that has been shown to increase pasture quality and milk production, especially over the late spring–summer. In this paper, we compare the energy and GHG balances of a conventional farm using a lagoon effluent system to one using anaerobic digestion supplemented by unutilised pasture collected by topping to treat effluent and generate electricity. For a hypothetical 300-cow, 100-ha farm, topping all paddocks from 1800 to 1600 kg DM/ha four times per year over the spring–summer would result in 80 tonnes of DM being collected, which when digested to biogas would yield 50 000 kWh (180 GJ) of electricity. This is in addition to the 16 000 kWh from the effluent digestion. About 90 GJ of diesel would be used to carry out the topping, emitting ~0.06 t CO2e/ha. In contrast, the anaerobic/topping system would offset/avoid 0.74 t CO2e/ha of GHG emissions: 0.6 t CO2e/ha of avoided CH4 emissions from the lagoon and 0.14 t CO2e/ha from biogas electricity offsetting grid electricity GHGs. For the average dairy farm, the net reduction in emissions of 0.68 CO2e/ha would equate to nearly 14% of the direct and indirect emissions from farming activities and if implemented on a national scale, could decrease GHG emissions nearly 1.4 million t CO2e or ~10% of New Zealand’s Kyoto Protocol obligations while at the same time better manage dairy farm effluent, enhance on-farm and national energy security and increase milk production through better quality pastures.


2021 ◽  
Vol 238 ◽  
pp. 01007
Author(s):  
Elena Rossi ◽  
Isabella Pecorini ◽  
Renato Iannelli

The hydraulic retention time (HRT) is a key parameter in dry-anaerobic digestion to set during the reactor configuration in order to achieve the optimal biogas production. For this reason, the study compared the results of two experimental tests operating with an HRT of 23 and 14 days. During the tests, the feedstock was organic fraction of municipal solid waste with a solid content of 33% and the digester was a pilot-scale plug-flow reactor operating in thermophilic condition. The highest specific biogas production of 311.91 Nlbiogas kg-1 d-1 was achieved when the HRT was set to 23 days. On the contrary, the highest methane production rate of 1.43 NlCH4 l-1 d-1 was achieved for an HRT of 14 days. In addition, the volatile solids removal (49.15% on average) and the energy content o(4.8 MJ kg-1 on average) were higher for HRT 23 days than for HRT14 days. The results indicated that in dry-anaerobic digestion of organic fraction of municipal solid waste, 23 days is a suitable HRT for energy recovery.


2010 ◽  
Vol 61 (2) ◽  
pp. 365-373 ◽  
Author(s):  
S. Soda ◽  
Y. Iwai ◽  
K. Sei ◽  
Y. Shimod ◽  
M. Ike

An energy consumption model was developed for evaluating sewage sludge treatment plants (SSTPs) incorporating various treatment processes such as thickening, anaerobic digestion, dewatering, incineration, and melting. Based on data analyses from SSTPs in Osaka, Japan, electricity consumption intensities for thickening, anaerobic digestion, dewatering, incineration, and melting and heat consumption intensities for anaerobic digestion, incineration, and melting were expressed as functions of sludge-loading on each unit process. The model was applied for predicting the energy consumption and greenhouse gas (GHG) emissions of SSTPs using various treatment processes and power and heat generation processes using digestion gas. Results showed that SSTPs lacking incineration and melting processes but having power generation processes showed excess energy production at the high sludge-loading rate. Energy consumption of the SSTPs without incineration and melting processes were low, but their GHG emissions were high because of CH4 and N2O emissions from sludge cake at the landfill site. Incineration and melting processes consume much energy, but have lower CH4 and N2O emissions.


Sign in / Sign up

Export Citation Format

Share Document